↓ Skip to main content

The Human Virome

Overview of attention for book
Cover of 'The Human Virome'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Flow Cytometry and Direct Sequencing of Viruses
  3. Altmetric Badge
    Chapter 2 Tissue-Based Universal Virus Detection (TUViD-VM) Protocol for Viral Metagenomics
  4. Altmetric Badge
    Chapter 3 Protocol for Generating Infectious RNA Viromes from Complex Biological Samples
  5. Altmetric Badge
    Chapter 4 Phage on Tap: A Quick and Efficient Protocol for the Preparation of Bacteriophage Laboratory Stocks
  6. Altmetric Badge
    Chapter 5 Extraction and Purification of Viruses from Fecal Samples for Metagenome and Morphology Analyses
  7. Altmetric Badge
    Chapter 6 Virome Sequencing of Stool Samples
  8. Altmetric Badge
    Chapter 7 NetoVIR: Modular Approach to Customize Sample Preparation Procedures for Viral Metagenomics
  9. Altmetric Badge
    Chapter 8 Viral Genome Isolation from Human Faeces for Succession Assessment of the Human Gut Virome
  10. Altmetric Badge
    Chapter 9 Introduction to Techniques and Methodologies for Characterizing the Human Respiratory Virome
  11. Altmetric Badge
    Chapter 10 Targeted Sequencing of Respiratory Viruses in Clinical Specimens for Pathogen Identification and Genome-Wide Analysis
  12. Altmetric Badge
    Chapter 11 Methods for Enrichment and Sequencing of Oral Viral Assemblages: Saliva, Oral Mucosa, and Dental Plaque Viromes
  13. Altmetric Badge
    Chapter 12 A Method for Isolation of the Virome from Plasma Samples
  14. Altmetric Badge
    Chapter 13 Viral Concentration and Amplification from Human Serum Samples Prior to Application of Next-Generation Sequencing Analysis
  15. Altmetric Badge
    Chapter 14 Identification and Quantification of DNA Viral Populations in Human Urine Using Next-Generation Sequencing Approaches
  16. Altmetric Badge
    Chapter 15 Diversity Analysis in Viral Metagenomes
  17. Altmetric Badge
    Chapter 16 Construction of a Comprehensive Database from the Existing Viral Sequences Available from the International Nucleotide Sequence Database Collaboration
  18. Altmetric Badge
    Chapter 17 Robust Analysis of Time Series in Virome Metagenomics
  19. Altmetric Badge
    Chapter 18 Bioinformatics Assembling and Assessment of Novel Coxsackievirus B1 Genome
Attention for Chapter 15: Diversity Analysis in Viral Metagenomes
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Diversity Analysis in Viral Metagenomes
Chapter number 15
Book title
The Human Virome
Published in
Methods in molecular biology, August 2018
DOI 10.1007/978-1-4939-8682-8_15
Pubmed ID
Book ISBNs
978-1-4939-8681-1, 978-1-4939-8682-8
Authors

Jorge Francisco Vázquez-Castellanos, Vázquez-Castellanos, Jorge Francisco

Abstract

Viruses are the most abundant and diverse biological entity in the earth. Nowadays, there are several viral metagenomes from different ecological niches which have been used to characterize new viral particles and to determine their diversity. However, viral metagenomic data have the disadvantage to be high-dimensional compositional and sparse. This type of data renders many of the conventional multivariate statistical analyses inoperative. Fortunately, different libraries and statistical packages have been developed to deal with this problem and perform the different ecological and statistical analyses. In the present chapter, it is analyzed simulated viral metagenomes, based on real human gut-associated viral metagenomes, using different R and python packages. The example presented here includes the estimation and comparison of different indexes of diversity, evenness, and richness; perform different ordination and statistical analysis using different dissimilarity metrics; determine the optimal cluster configuration and perform biomarker discovery. The scripts and the simulated datasets are in https://github.com/jorgevazcast/Viromic-diversity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Student > Master 3 12%
Student > Bachelor 3 12%
Lecturer 2 8%
Student > Doctoral Student 2 8%
Other 2 8%
Unknown 9 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 27%
Agricultural and Biological Sciences 4 15%
Immunology and Microbiology 2 8%
Computer Science 1 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 2 8%
Unknown 9 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2018.
All research outputs
#19,017,658
of 23,577,761 outputs
Outputs from Methods in molecular biology
#8,198
of 13,423 outputs
Outputs of similar age
#258,129
of 334,911 outputs
Outputs of similar age from Methods in molecular biology
#163
of 250 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,423 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,911 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 250 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.