↓ Skip to main content

Quasispecies: From Theory to Experimental Systems

Overview of attention for book
Attention for Chapter 470: Evolution of RNA-Based Networks.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Evolution of RNA-Based Networks.
Chapter number 470
Book title
Quasispecies: From Theory to Experimental Systems
Published in
Current topics in microbiology and immunology, September 2015
DOI 10.1007/82_2015_470
Pubmed ID
Book ISBNs
978-3-31-923897-5, 978-3-31-923898-2
Authors

Stadler, Peter F, Peter F. Stadler, Stadler, Peter F.

Abstract

RNA molecules have served for decades as a paradigmatic example of molecular evolution that is tractable both in in vitro experiments and in detailed computer simulation. The adaptation of RNA sequences to external selection pressures is well studied and well understood. The de novo innovation or optimization of RNA aptamers and riboswitches in SELEX experiments serves as a case in point. Likewise, fitness landscapes building upon the efficiently computable RNA secondary structures have been a key toward understanding realistic fitness landscapes. Much less is known, however, on models in which multiple RNAs interact with each other, thus actively influencing the selection pressures acting on them. From a computational perspective, RNA-RNA interactions can be dealt with by same basic methods as the folding of a single RNA molecule, although many details become more complicated. RNA-RNA interactions are frequently employed in cellular regulation networks, e.g., as miRNA bases mRNA silencing or in the modulation of bacterial mRNAs by small, often highly structured sRNAs. In this chapter, we summarize the key features of networks of replicators. We highlight the differences between quasispecies-like models describing templates copied by an external replicase and hypercycle similar to autocatalytic replicators. Two aspects are of importance: the dynamics of selection within a population, usually described by conventional dynamical systems, and the evolution of replicating species in the space of chemical types. Product inhibition plays a key role in modulating selection dynamics from survival of the fittest to extinction of unfittest. The sequence evolution of replicators is rather well understood as approximate optimization in a fitness landscape for templates that is shaped by the sequence-structure map of RNA. Some of the properties of this map, in particular shape space covering and extensive neutral networks, give rise to evolutionary patterns such as drift-like motion in sequence space, akin to the behavior of RNA quasispecies. In contrast, very little is known about the influence of sequence-structure maps on autocatalytic replication systems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 7%
Canada 1 7%
Unknown 13 87%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 40%
Student > Master 2 13%
Student > Ph. D. Student 2 13%
Student > Doctoral Student 1 7%
Professor 1 7%
Other 1 7%
Unknown 2 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 40%
Biochemistry, Genetics and Molecular Biology 5 33%
Chemistry 1 7%
Medicine and Dentistry 1 7%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 July 2016.
All research outputs
#15,345,593
of 22,826,360 outputs
Outputs from Current topics in microbiology and immunology
#444
of 681 outputs
Outputs of similar age
#156,539
of 267,016 outputs
Outputs of similar age from Current topics in microbiology and immunology
#16
of 29 outputs
Altmetric has tracked 22,826,360 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 681 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,016 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.