↓ Skip to main content

Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide

Overview of attention for book
Cover of 'Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects.
  3. Altmetric Badge
    Chapter 2 Persulfidation (S-sulfhydration) and H 2 S
  4. Altmetric Badge
    Chapter 3 Physiological Roles of Hydrogen Sulfide and Polysulfides
  5. Altmetric Badge
    Chapter 4 H 2 S and Blood Vessels: An Overview
  6. Altmetric Badge
    Chapter 5 Hydrogen Sulfide and Urogenital Tract
  7. Altmetric Badge
    Chapter 6 H 2 S Is a Promoter of Angiogenesis: Identification of H 2 S “Receptors” and Its Molecular Switches in Vascular Endothelial Cells
  8. Altmetric Badge
    Chapter 7 Hydrogen Sulfide and Platelets: A Possible Role in Thrombosis
  9. Altmetric Badge
    Chapter 8 H 2 S and Inflammation: An Overview
  10. Altmetric Badge
    Chapter 9 Hydrogen Sulfide and Neuroinflammation
  11. Altmetric Badge
    Chapter 10 Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases.
  12. Altmetric Badge
    Chapter 11 H 2 S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals
  13. Altmetric Badge
    Chapter 12 Hydrogen Sulfide and Cancer.
  14. Altmetric Badge
    Chapter 13 Role of H2S Donors in Cancer Biology.
  15. Altmetric Badge
    Chapter 14 H2S: A New Approach to Lifespan Enhancement and Healthy Ageing?
  16. Altmetric Badge
    Chapter 15 Fluorescent Probes for H 2 S Detection and Quantification
  17. Altmetric Badge
    Chapter 16 The Pharmacological Effects of S -Propargyl-Cysteine, a Novel Endogenous H 2 S-Producing Compound
  18. Altmetric Badge
    Chapter 17 Phosphinodithioate and Phosphoramidodithioate Hydrogen Sulfide Donors.
  19. Altmetric Badge
    Chapter 18 Medicinal Chemistry: Insights into the Development of Novel H2S Donors
Attention for Chapter 10: Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases.
Chapter number 10
Book title
Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide
Published in
Handbook of experimental pharmacology, January 2015
DOI 10.1007/978-3-319-18144-8_10
Pubmed ID
Book ISBNs
978-3-31-918143-1, 978-3-31-918144-8
Authors

Nagpure, B V, Bian, Jin-Song, B. V. Nagpure, Jin-Song Bian, Nagpure, B. V.

Abstract

For more than 300 years, the toxicity of hydrogen sulfide (H2S) has been known to mankind. However, this point of view is changing as an increased interest was observed in H2S biology in the last two decades. The scientific community has succeeded to unravel many important physiological and pathological effects of H2S on mammalian body systems. Thus, H2S is now referred to as a third endogenous gaseous mediator along with nitric oxide and carbon monoxide. Acting as a neuromodulator, H2S facilitates long-term potentiation and regulates intracellular calcium levels, which are important processes in learning and memory. Aberrant endogenous production and metabolism of H2S are implicated in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). Various H2S donors have shown beneficial therapeutic effects in neurodegenerative disease models by targeting hallmark pathological events (e.g., amyloid-β production in AD and neuroinflammation in PD). The results obtained from many in vivo studies clearly show that H2S not only prevents neuronal and synaptic deterioration but also improves deficits in memory, cognition, and learning. The anti-inflammatory, antioxidant, and anti-apoptotic effects of H2S underlie its neuroprotective properties. In this chapter, we will overview the current understanding of H2S in context of neurodegenerative diseases, with special emphasis on its corrective effects on impaired learning, memory, and cognition.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 20%
Student > Ph. D. Student 5 12%
Researcher 4 10%
Student > Doctoral Student 3 7%
Student > Bachelor 3 7%
Other 6 15%
Unknown 12 29%
Readers by discipline Count As %
Neuroscience 9 22%
Medicine and Dentistry 6 15%
Pharmacology, Toxicology and Pharmaceutical Science 5 12%
Biochemistry, Genetics and Molecular Biology 3 7%
Psychology 2 5%
Other 2 5%
Unknown 14 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 July 2015.
All research outputs
#15,340,005
of 22,817,213 outputs
Outputs from Handbook of experimental pharmacology
#394
of 648 outputs
Outputs of similar age
#208,992
of 353,112 outputs
Outputs of similar age from Handbook of experimental pharmacology
#42
of 65 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 648 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,112 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.