↓ Skip to main content

Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide

Overview of attention for book
Cover of 'Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects.
  3. Altmetric Badge
    Chapter 2 Persulfidation (S-sulfhydration) and H 2 S
  4. Altmetric Badge
    Chapter 3 Physiological Roles of Hydrogen Sulfide and Polysulfides
  5. Altmetric Badge
    Chapter 4 H 2 S and Blood Vessels: An Overview
  6. Altmetric Badge
    Chapter 5 Hydrogen Sulfide and Urogenital Tract
  7. Altmetric Badge
    Chapter 6 H 2 S Is a Promoter of Angiogenesis: Identification of H 2 S “Receptors” and Its Molecular Switches in Vascular Endothelial Cells
  8. Altmetric Badge
    Chapter 7 Hydrogen Sulfide and Platelets: A Possible Role in Thrombosis
  9. Altmetric Badge
    Chapter 8 H 2 S and Inflammation: An Overview
  10. Altmetric Badge
    Chapter 9 Hydrogen Sulfide and Neuroinflammation
  11. Altmetric Badge
    Chapter 10 Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases.
  12. Altmetric Badge
    Chapter 11 H 2 S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals
  13. Altmetric Badge
    Chapter 12 Hydrogen Sulfide and Cancer.
  14. Altmetric Badge
    Chapter 13 Role of H2S Donors in Cancer Biology.
  15. Altmetric Badge
    Chapter 14 H2S: A New Approach to Lifespan Enhancement and Healthy Ageing?
  16. Altmetric Badge
    Chapter 15 Fluorescent Probes for H 2 S Detection and Quantification
  17. Altmetric Badge
    Chapter 16 The Pharmacological Effects of S -Propargyl-Cysteine, a Novel Endogenous H 2 S-Producing Compound
  18. Altmetric Badge
    Chapter 17 Phosphinodithioate and Phosphoramidodithioate Hydrogen Sulfide Donors.
  19. Altmetric Badge
    Chapter 18 Medicinal Chemistry: Insights into the Development of Novel H2S Donors
Attention for Chapter 15: Fluorescent Probes for H 2 S Detection and Quantification
Altmetric Badge

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Fluorescent Probes for H 2 S Detection and Quantification
Chapter number 15
Book title
Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide
Published in
Handbook of experimental pharmacology, January 2015
DOI 10.1007/978-3-319-18144-8_15
Pubmed ID
Book ISBNs
978-3-31-918143-1, 978-3-31-918144-8
Authors

Wei Feng, Brian W. Dymock, Feng, Wei, Dymock, Brian W.

Abstract

Many diverse, sensitive and structurally novel fluorescent probes have recently been reported for H2S detection. Quantification of H2S requires a selective chemosensor which will react only with H2S against a background of high concentrations of other thiols or reducing agents. Most published probes are able to quantify H2S selectively in a simple in vitro system with the most sensitive probes able to detect H2S at below 100 nM concentrations. A subset of probes also have utility in sensing H2S in living cells, and there are now several with specific sub-cellular localization and a few cases of in vivo applications. Biologists studying H2S now have a wide range of tools to assist them to aid further understanding of the role of H2S in biology.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 21%
Researcher 3 16%
Student > Master 2 11%
Student > Ph. D. Student 2 11%
Other 1 5%
Other 2 11%
Unknown 5 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 21%
Pharmacology, Toxicology and Pharmaceutical Science 2 11%
Sports and Recreations 2 11%
Chemistry 2 11%
Agricultural and Biological Sciences 1 5%
Other 1 5%
Unknown 7 37%