↓ Skip to main content

DNA Replication

Overview of attention for book
Cover of 'DNA Replication'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A high-throughput confocal fluorescence microscopy platform to study DNA replication stress in yeast cells.
  3. Altmetric Badge
    Chapter 2 Microscopy techniques to examine DNA replication in fission yeast.
  4. Altmetric Badge
    Chapter 3 High-Resolution Analysis of Mammalian DNA Replication Units
  5. Altmetric Badge
    Chapter 4 Analyzing the Dynamics of DNA Replication in Mammalian Cells Using DNA Combing
  6. Altmetric Badge
    Chapter 5 Measuring DNA content by flow cytometry in fission yeast.
  7. Altmetric Badge
    Chapter 6 Incorporation of thymidine analogs for studying replication kinetics in fission yeast.
  8. Altmetric Badge
    Chapter 7 EdU Incorporation for FACS and Microscopy Analysis of DNA Replication in Budding Yeast.
  9. Altmetric Badge
    Chapter 8 Determination of deoxyribonucleoside triphosphate concentrations in yeast cells by strong anion-exchange high-performance liquid chromatography coupled with ultraviolet detection.
  10. Altmetric Badge
    Chapter 9 Measuring ribonucleotide incorporation into DNA in vitro and in vivo.
  11. Altmetric Badge
    Chapter 10 Detection and Sequencing of Okazaki Fragments in S. cerevisiae.
  12. Altmetric Badge
    Chapter 11 ChIP-Seq to Analyze the Binding of Replication Proteins to Chromatin.
  13. Altmetric Badge
    Chapter 12 Chromatin immunoprecipitation to detect DNA replication and repair factors.
  14. Altmetric Badge
    Chapter 13 Molecular Genetic Methods to Study DNA Replication Protein Function in Haloferax volcanii, A Model Archaeal Organism.
  15. Altmetric Badge
    Chapter 14 Single-Molecule Observation of Prokaryotic DNA Replication
  16. Altmetric Badge
    Chapter 15 Analyzing the Response to Dysfunction Replication Forks Using the RTS1 Barrier System in Fission Yeast.
  17. Altmetric Badge
    Chapter 16 Purification of Restriction Fragments Containing Replication Intermediates from Complex Genomes for 2-D Gel Analysis
  18. Altmetric Badge
    Chapter 17 Isolation of Restriction Fragments Containing Origins of Replication from Complex Genomes
Attention for Chapter 6: Incorporation of thymidine analogs for studying replication kinetics in fission yeast.
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

twitter
1 X user
wikipedia
2 Wikipedia pages

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Incorporation of thymidine analogs for studying replication kinetics in fission yeast.
Chapter number 6
Book title
DNA Replication
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2596-4_6
Pubmed ID
Book ISBNs
978-1-4939-2595-7, 978-1-4939-2596-4
Authors

Rhind, Nicholas, Nicholas Rhind

Abstract

Labeling DNA during in vivo replication by the incorporation of exogenous thymidine and thymidine analogs has been a mainstay of DNA replication and repair studies for decades. Unfortunately, thymidine labeling does not work in fungi, because they lack the thymidine salvage pathway required for uptake of exogenous thymidine. This obstacle to thymidine labeling has been overcome in yeast by engineering a minimal thymidine salvage pathway consisting of a nucleoside transporter to allow uptake of exogenous thymidine from the medium and a thymidine kinase to phosphorylate the thymidine into thymidine monophosphate, which can be used by the cell. This chapter describes the labeling of fission yeast, Schizosaccharomyces pombe, with the thymidine analog BrdU in order to identify sites and determine kinetics of DNA replication.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 36%
Researcher 3 21%
Student > Bachelor 2 14%
Student > Master 1 7%
Student > Doctoral Student 1 7%
Other 0 0%
Unknown 2 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 57%
Agricultural and Biological Sciences 3 21%
Computer Science 1 7%
Unknown 2 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 November 2022.
All research outputs
#6,703,304
of 23,652,325 outputs
Outputs from Methods in molecular biology
#2,036
of 13,342 outputs
Outputs of similar age
#89,673
of 356,401 outputs
Outputs of similar age from Methods in molecular biology
#153
of 988 outputs
Altmetric has tracked 23,652,325 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 13,342 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 356,401 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 988 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.