↓ Skip to main content

Patient-Specific Induced Pluripotent Stem Cell Models

Overview of attention for book
Cover of 'Patient-Specific Induced Pluripotent Stem Cell Models'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 157 Patient-Specific Induced Pluripotent Stem Cell Models
  3. Altmetric Badge
    Chapter 165 Patient-Specific Induced Pluripotent Stem Cell Models: Characterization of iPS Cell-Derived Cardiomyocytes.
  4. Altmetric Badge
    Chapter 166 Patient-Specific Induced Pluripotent Stem Cell Models
  5. Altmetric Badge
    Chapter 167 Modeling Axonal Phenotypes with Human Pluripotent Stem Cells.
  6. Altmetric Badge
    Chapter 168 In Vitro Modeling of Alcohol-Induced Liver Injury Using Human-Induced Pluripotent Stem Cells.
  7. Altmetric Badge
    Chapter 169 Modeling Genomic Imprinting Disorders Using Induced Pluripotent Stem Cells.
  8. Altmetric Badge
    Chapter 170 Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.
  9. Altmetric Badge
    Chapter 171 Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases
  10. Altmetric Badge
    Chapter 172 Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells.
  11. Altmetric Badge
    Chapter 173 Generation of Cardiomyocytes from Pluripotent Stem Cells.
  12. Altmetric Badge
    Chapter 178 Patient-Specific Induced Pluripotent Stem Cell Models
  13. Altmetric Badge
    Chapter 179 A Doxycycline-Inducible System for Genetic Correction of iPSC Disease Models.
  14. Altmetric Badge
    Chapter 194 Multisystemic Disease Modeling of Liver-Derived Protein Folding Disorders Using Induced Pluripotent Stem Cells (iPSCs).
  15. Altmetric Badge
    Chapter 195 Patient-Specific Induced Pluripotent Stem Cell Models
  16. Altmetric Badge
    Chapter 196 Patient-Specific Induced Pluripotent Stem Cell Models
  17. Altmetric Badge
    Chapter 204 Generation of Integration-Free Patient Specific iPS Cells Using Episomal Plasmids Under Feeder Free Conditions.
  18. Altmetric Badge
    Chapter 205 Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population.
  19. Altmetric Badge
    Chapter 225 Patient-Specific Induced Pluripotent Stem Cell Models
  20. Altmetric Badge
    Chapter 257 Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells.
  21. Altmetric Badge
    Chapter 258 Generation and Characterization of Induced Pluripotent Stem Cells from Patients with mtDNA Mutations.
  22. Altmetric Badge
    Chapter 267 Patient-Specific Induced Pluripotent Stem Cell Models
  23. Altmetric Badge
    Chapter 273 Generation and Characterization of Patient-Specific iPSC Model for Cardiovascular Disease.
  24. Altmetric Badge
    Chapter 278 Transgene-Free Disease-Specific iPSC Generation from Fibroblasts and Peripheral Blood Mononuclear Cells.
Attention for Chapter 257: Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells.
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells.
Chapter number 257
Book title
Patient-Specific Induced Pluripotent Stem Cell Models
Published in
Methods in molecular biology, May 2015
DOI 10.1007/7651_2015_257
Pubmed ID
Book ISBNs
978-1-4939-3033-3, 978-1-4939-3034-0
Authors

Shoji, Emi, Woltjen, Knut, Sakurai, Hidetoshi, Emi Shoji, Knut Woltjen, Hidetoshi Sakurai

Editors

Andras Nagy, Kursad Turksen

Abstract

Patient-derived induced pluripotent stem cells (iPSCs) have opened the door to recreating pathological conditions in vitro using differentiation into diseased cells corresponding to each target tissue. Yet for muscular diseases, a method for reproducible and efficient myogenic differentiation from human iPSCs is required for in vitro modeling. Here, we introduce a myogenic differentiation protocol mediated by inducible transcription factor expression that reproducibly and efficiently drives human iPSCs into myocytes. Delivering a tetracycline-inducible,myogenic differentiation 1 (MYOD1) piggyBac (PB) vector to human iPSCs enables the derivation of iPSCs that undergo uniform myogenic differentiation in a short period of time. This differentiation protocol yields a homogenous skeletal muscle cell population, reproducibly reaching efficiencies as high as 70-90 %. MYOD1-induced myocytes demonstrate characteristics of mature myocytes such as cell fusion and cell twitching in response to electric stimulation within 14 days of differentiation. This differentiation protocol can be applied widely in various types of patient-derived human iPSCs and has great prospects in disease modeling particularly with inherited diseases that require studies of early pathogenesis and drug screening.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 56 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 23%
Researcher 11 19%
Student > Bachelor 6 11%
Student > Master 4 7%
Student > Doctoral Student 2 4%
Other 5 9%
Unknown 16 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 26%
Agricultural and Biological Sciences 10 18%
Neuroscience 6 11%
Chemical Engineering 3 5%
Engineering 3 5%
Other 4 7%
Unknown 16 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2015.
All research outputs
#3,784,561
of 22,805,349 outputs
Outputs from Methods in molecular biology
#968
of 13,120 outputs
Outputs of similar age
#48,818
of 264,461 outputs
Outputs of similar age from Methods in molecular biology
#2
of 21 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,120 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,461 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.