↓ Skip to main content

Neurotoxin Modeling of Brain Disorders — Life-long Outcomes in Behavioral Teratology

Overview of attention for book
Cover of 'Neurotoxin Modeling of Brain Disorders — Life-long Outcomes in Behavioral Teratology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 394 Applications of the Neonatal Quinpirole Model to Psychosis and Convergence upon the Dopamine D 2 Receptor
  3. Altmetric Badge
    Chapter 395 Lifelong Rodent Model of Tardive Dyskinesia—Persistence After Antipsychotic Drug Withdrawal
  4. Altmetric Badge
    Chapter 396 Perinatal 6-Hydroxydopamine to Produce a Lifelong Model of Severe Parkinson’s Disease
  5. Altmetric Badge
    Chapter 397 Perinatal 6-Hydroxydopamine Modeling of ADHD
  6. Altmetric Badge
    Chapter 398 Selective Lifelong Destruction of Brain Monoaminergic Nerves Through Perinatal DSP-4 Treatment
  7. Altmetric Badge
    Chapter 399 Pathological Implications of Oxidative Stress in Patients and Animal Models with Schizophrenia: The Role of Epidermal Growth Factor Receptor Signaling.
  8. Altmetric Badge
    Chapter 403 Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review.
  9. Altmetric Badge
    Chapter 404 Perinatal Influences of Valproate on Brain and Behaviour: An Animal Model for Autism.
  10. Altmetric Badge
    Chapter 405 Neurobehavioral Effects from Developmental Methamphetamine Exposure
  11. Altmetric Badge
    Chapter 409 Exercise and Nutritional Benefits in PD: Rodent Models and Clinical Settings.
  12. Altmetric Badge
    Chapter 411 Noradrenergic–Dopaminergic Interactions Due to DSP-4–MPTP Neurotoxin Treatments: Iron Connection
  13. Altmetric Badge
    Chapter 414 Perinatal Lesioning and Lifelong Effects of the Noradrenergic Neurotoxin 6-Hydroxydopa
  14. Altmetric Badge
    Chapter 415 Attention-Deficit/Hyperactivity Disorder: Focus upon Aberrant N-Methyl- d -Aspartate Receptors Systems
  15. Altmetric Badge
    Chapter 416 Early-Life Toxic Insults and Onset of Sporadic Neurodegenerative Diseases-an Overview of Experimental Studies.
  16. Altmetric Badge
    Chapter 417 Perinatal Domoic Acid as a Neuroteratogen
  17. Altmetric Badge
    Chapter 418 Perinatal 192 IgG-Saporin as Neuroteratogen.
  18. Altmetric Badge
    Chapter 419 Disrupted Circadian Rhythm as a Common Player in Developmental Models of Neuropsychiatric Disorders
  19. Altmetric Badge
    Chapter 420 NGF in Early Embryogenesis, Differentiation, and Pathology in the Nervous and Immune Systems
  20. Altmetric Badge
    Chapter 434 Neuroteratology and Animal Modeling of Brain Disorders
  21. Altmetric Badge
    Chapter 444 The Use of Perinatal 6-Hydroxydopamine to Produce a Rodent Model of Lesch–Nyhan Disease
Attention for Chapter 396: Perinatal 6-Hydroxydopamine to Produce a Lifelong Model of Severe Parkinson’s Disease
Altmetric Badge

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Perinatal 6-Hydroxydopamine to Produce a Lifelong Model of Severe Parkinson’s Disease
Chapter number 396
Book title
Neurotoxin Modeling of Brain Disorders — Life-long Outcomes in Behavioral Teratology
Published in
Current topics in behavioral neurosciences, January 2015
DOI 10.1007/7854_2015_396
Pubmed ID
Book ISBNs
978-3-31-934134-7, 978-3-31-934136-1
Authors

John P. Kostrzewa, Rose Anna Kostrzewa, Richard M. Kostrzewa, Ryszard Brus, Przemysław Nowak, Kostrzewa, John P., Kostrzewa, Rose Anna, Kostrzewa, Richard M., Brus, Ryszard, Nowak, Przemysław

Abstract

The classic rodent model of Parkinson's disease (PD) is produced by unilateral lesioning of pars compacta substantia nigra (SNpc) in adult rats, producing unilateral motor deficits which can be assessed by dopamine (DA) D2 receptor (D2-R) agonist induction of measurable unilateral rotations. Bilateral SNpc lesions in adult rats produce life-threatening aphagia, adipsia, and severe motor disability resembling paralysis-a PD model that is so compromised that it is seldom used. Described in this paper is a PD rodent model in which there is bilateral 99 % loss of striatal dopaminergic innervation, produced by bilateral intracerebroventricular or intracisternal 6-hydroxydopamine (6-OHDA) administration to perinatal rats. This procedure produces no lethality and does not shorten the life span, while rat pups continue to suckle through the pre-weaning period; and eat without impairment post-weaning. There is no obvious motor deficit during or after weaning, except with special testing, so that parkinsonian rats are indistinguishable from control and thus allow for behavioral assessments to be conducted in a blinded manner. L-DOPA (L-3,4-dihydroxyphenylalanine) treatment increases DA content in striatal tissue, also evokes a rise in extraneuronal (i.e., in vivo microdialysate) DA, and is able to evoke dyskinesias. D2-R agonists produce effects similar to those of L-DOPA. In addition, effects of both D1- and D2-R agonist effects on overt or latent receptor supersensitization are amenable to study. Elevated basal levels of reactive oxygen species (ROS), namely hydroxyl radical, occurring in dopaminergic denervated striatum are suppressed by L-DOPA treatment. Striatal serotoninergic hyperinnervation ensuing after perinatal dopaminergic denervation does not appear to interfere with assessments of the dopaminergic system by L-DOPA or D1- or D2-R agonist challenge. Partial lesioning of serotonin fibers with a selective neurotoxin either at birth or in adulthood is able to eliminate serotoninergic hyperinnervation and restore the normal level of serotoninergic innervation. Of all the animal models of PD, that produced by perinatal 6-OHDA lesioning provides the most pronounced destruction of nigrostriatal neurons, thus representing a model of severe PD, as the neurochemical outcome resembles the status of severe PD in humans but without obvious motor deficits.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Professor > Associate Professor 1 14%
Other 1 14%
Unknown 5 71%
Readers by discipline Count As %
Psychology 1 14%
Unknown 6 86%