↓ Skip to main content

Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Overview of attention for book
Cover of 'Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Clinical Forms and Animal Models of Hypophosphatasia
  3. Altmetric Badge
    Chapter 2 Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations
  4. Altmetric Badge
    Chapter 3 Genetically Modified Mice for Studying TNAP Function
  5. Altmetric Badge
    Chapter 4 Tissue-Nonspecific Alkaline Phosphatase in the Developing Brain and in Adult Neurogenesis
  6. Altmetric Badge
    Chapter 5 Rediscovering TNAP in the Brain: A Major Role in Regulating the Function and Development of the Cerebral Cortex.
  7. Altmetric Badge
    Chapter 6 The Retinal TNAP.
  8. Altmetric Badge
    Chapter 7 Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain
  9. Altmetric Badge
    Chapter 8 What Can We Learn About the Neural Functions of TNAP from Studies on Other Organs and Tissues?
  10. Altmetric Badge
    Chapter 9 TNAP, an Essential Player in Membrane Lipid Rafts of Neuronal Cells
  11. Altmetric Badge
    Chapter 10 Signal Transduction Pathways of TNAP: Molecular Network Analyses.
  12. Altmetric Badge
    Chapter 11 Vitamin B-6 Metabolism and Interactions with TNAP
  13. Altmetric Badge
    Chapter 12 Tetramisole and Levamisole Suppress Neuronal Activity Independently from Their Inhibitory Action on Tissue Non-specific Alkaline Phosphatase in Mouse Cortex.
  14. Altmetric Badge
    Chapter 13 TNAP and Pain Control
  15. Altmetric Badge
    Chapter 14 Neurological Symptoms of Hypophosphatasia
  16. Altmetric Badge
    Chapter 15 Recombinant Enzyme Replacement Therapy in Hypophosphatasia
  17. Altmetric Badge
    Chapter 16 Neurogenetic Aspects of Hyperphosphatasia in Mabry Syndrome
  18. Altmetric Badge
    Chapter 17 The Role of Tissue Non-specific Alkaline Phosphatase (TNAP) in Neurodegenerative Diseases: Alzheimer's Disease in the Focus.
  19. Altmetric Badge
    Chapter 18 TNAP Plays a Key Role in Neural Differentiation as well as in Neurodegenerative Disorders.
Attention for Chapter 3: Genetically Modified Mice for Studying TNAP Function
Altmetric Badge

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Genetically Modified Mice for Studying TNAP Function
Chapter number 3
Book title
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)
Published in
Sub cellular biochemistry, January 2015
DOI 10.1007/978-94-017-7197-9_3
Pubmed ID
Book ISBNs
978-9-40-177196-2, 978-9-40-177197-9
Authors

Sonoko Narisawa, Narisawa, Sonoko

Abstract

Genetically modified mice are powerful tools for understanding the functions of genes and proteins and often serve as models of human disease. Here, several knockout and transgenic mouse lines related to tissue-nonspecific alkaline phosphatase (TNAP) are described. Conventional TNAP knockout mice die before weaning and show vitamin B6 dependent epilepsy and impaired bone mineralization, mimicking infantile hypophosphatasia. Administration of recombinant human TNAP rescues the lethal phenotype and improves bone mineralization in the null knockout mice, and this enzyme replacement therapy has been successfully applied to the treatment of human patients. Transgenic expression of human TNAP also rescues the TNAP knockout mice. Studies of the TNAP knockout mice and their double knockouts with ectonucleotide pyrophosphatase/phosphodiesterase 1 or progressive ankylosis protein revealed that pyridoxal phosphate and inorganic pyrophosphate are natural substrates of TNAP. Bone osteopontin from TNAP knockout mice is highly phosphorylated, whereas osteopontin from TNAP knockout mice expressing human TNAP is de-phosphorylated, similar to that in wild type mice, indicating that osteopontin is also a natural substrate of TNAP and that phosphorylated osteopontin contributes the impaired bone mineralization in TNAP knockout mice. Conditional TNAP knockout mice and TNAP mutants produced by ENU (N-ethyl-N-nitrosourea) mutagenesis show milder hypophosphatasia and are expected to be useful models of adult hypophosphatasia.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 23%
Researcher 2 15%
Student > Ph. D. Student 2 15%
Professor 1 8%
Other 1 8%
Other 1 8%
Unknown 3 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 31%
Agricultural and Biological Sciences 2 15%
Neuroscience 2 15%
Nursing and Health Professions 1 8%
Engineering 1 8%
Other 0 0%
Unknown 3 23%