↓ Skip to main content

Drebrin

Overview of attention for book
Cover of 'Drebrin'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 General Introduction to Drebrin
  3. Altmetric Badge
    Chapter 2 Molecular Cloning of Drebrin: Progress and Perspectives
  4. Altmetric Badge
    Chapter 3 Biochemistry of Drebrin and Its Binding to Actin Filaments
  5. Altmetric Badge
    Chapter 4 Phosphorylation of Drebrin and Its Role in Neuritogenesis
  6. Altmetric Badge
    Chapter 5 Remodeling of Actin Filaments by Drebrin A and Its Implications
  7. Altmetric Badge
    Chapter 6 Cell Shape Change by Drebrin
  8. Altmetric Badge
    Chapter 7 Localization of Drebrin: Light Microscopy Study
  9. Altmetric Badge
    Chapter 8 Making of a Synapse: Recurrent Roles of Drebrin A at Excitatory Synapses Throughout Life
  10. Altmetric Badge
    Chapter 9 Drebrin in Neuronal Migration and Axonal Growth
  11. Altmetric Badge
    Chapter 10 Drebrin and Spine Formation
  12. Altmetric Badge
    Chapter 11 Role of Drebrin in Synaptic Plasticity
  13. Altmetric Badge
    Chapter 12 Drebrin in Alzheimer’s Disease
  14. Altmetric Badge
    Chapter 13 Drebrins and Connexins: A Biomedical Perspective
  15. Altmetric Badge
    Chapter 14 Homer, Spikar, and Other Drebrin-Binding Proteins in the Brain
  16. Altmetric Badge
    Chapter 15 Role of Drebrin at the Immunological Synapse
  17. Altmetric Badge
    Chapter 16 Drebrin Regulation of Calcium Signaling in Immune Cells
  18. Altmetric Badge
    Chapter 17 Drebrin and Spermatogenesis
  19. Altmetric Badge
    Chapter 18 Drebrin at Junctional Plaques
  20. Altmetric Badge
    Chapter 19 Juxtanuclear Drebrin-Enriched Zone
  21. Altmetric Badge
    Chapter 20 Drebrin in Renal Glomeruli
  22. Altmetric Badge
    Chapter 21 Drebrin’s Role in the Maintenance of Endothelial Integrity
  23. Altmetric Badge
    Chapter 22 Regulation of Skeletal Myoblast Differentiation by Drebrin
  24. Altmetric Badge
    Chapter 23 The Role of Drebrin in Cancer Cell Invasion
  25. Altmetric Badge
    Chapter 24 Erratum to: Drebrin - From Structure and Function to Physiological and Pathological Roles
Attention for Chapter 13: Drebrins and Connexins: A Biomedical Perspective
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Drebrins and Connexins: A Biomedical Perspective
Chapter number 13
Book title
Drebrin
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-4-431-56550-5_13
Pubmed ID
Book ISBNs
978-4-43-156548-2, 978-4-43-156550-5
Authors

Irina V. Majoul, Justus S. Ernesti, Eugenia V. Butkevich, Rainer Duden, Majoul, Irina V., Ernesti, Justus S., Butkevich, Eugenia V., Duden, Rainer

Abstract

In this chapter we summarize knowledge on the role of drebrin in cell-cell communications. Specifically, we follow drebrin-connexin-43 interactions and drebrin behavior at the cell-cell interface described earlier. Drebrin is a part of the actin cytoskeleton which is a target of numerous bacteria and viruses invading mammalian cells. Drebrin phosphorylation, self-inhibition and transition between filaments, particles, and podosomes underlie cellular mechanisms involved in diseases and cognitive disorders. Cytoskeletal rearrangements influence the state of gap junction contacts which regulate cell signaling and metabolic flow of information across cells in tissues. Taking into account that connexin-43 (Cx43) (together with Cx30) is heavily expressed in astrocytes and that drebrin supports cell-cell contacts, the understanding of details of how brain cells live and die reveals molecular pathology involved in neurodegeneration, Alzheimer's disease (AD), other cognitive disorders, and aging.Bidirectional connexin channels are permeable to Ca(2+) ions, IP3, ATP, and cAMP. Connexin hemichannels are important for paracrine regulation and can release and exchange energy with other cells using ATP to transfer information and to support damaged cells. Connexin channels, hemichannels, and adhesion plaques are regulated by assembly and disassembly of the actin cytoskeleton. Drebrin degradation can alter gap junction communication, and drebrin level is decreased in the brain of AD patients. The diversity of drebrin functions in neurons, astrocytes, and non-neuronal cells still remains to be revealed. We believe that the knowledge on drebrin summarized here will contribute to key questions, "covering the gap" between cell-cell communications and the submembrane cytoskeleton.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 18%
Student > Master 3 14%
Student > Bachelor 2 9%
Other 2 9%
Unspecified 1 5%
Other 1 5%
Unknown 9 41%
Readers by discipline Count As %
Neuroscience 5 23%
Medicine and Dentistry 2 9%
Unspecified 1 5%
Agricultural and Biological Sciences 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Other 2 9%
Unknown 10 45%