↓ Skip to main content

Nonribosomal Peptide and Polyketide Biosynthesis

Overview of attention for book
Cover of 'Nonribosomal Peptide and Polyketide Biosynthesis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Structural Biology of Nonribosomal Peptide Synthetases.
  3. Altmetric Badge
    Chapter 2 The Assembly Line Enzymology of Polyketide Biosynthesis.
  4. Altmetric Badge
    Chapter 3 Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay
  5. Altmetric Badge
    Chapter 4 Affinity Purification Method for the Identification of Nonribosomal Peptide Biosynthetic Enzymes Using a Synthetic Probe for Adenylation Domains
  6. Altmetric Badge
    Chapter 5 Colorimetric Detection of the Adenylation Activity in Nonribosomal Peptide Synthetases
  7. Altmetric Badge
    Chapter 6 Facile Synthetic Access to Glycopeptide Antibiotic Precursor Peptides for the Investigation of Cytochrome P450 Action in Glycopeptide Antibiotic Biosynthesis
  8. Altmetric Badge
    Chapter 7 Reconstitution of Fungal Nonribosomal Peptide Synthetases in Yeast and In Vitro.
  9. Altmetric Badge
    Chapter 8 The Continuing Development of E. coli as a Heterologous Host for Complex Natural Product Biosynthesis
  10. Altmetric Badge
    Chapter 9 Screening for Expressed Nonribosomal Peptide Synthetases and Polyketide Synthases Using LC-MS/MS-Based Proteomics.
  11. Altmetric Badge
    Chapter 10 Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi.
  12. Altmetric Badge
    Chapter 11 In Situ Analysis of Bacterial Lipopeptide Antibiotics by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.
  13. Altmetric Badge
    Chapter 12 Secondary Metabolic Pathway-Targeted Metabolomics.
  14. Altmetric Badge
    Chapter 13 Annotating and Interpreting Linear and Cyclic Peptide Tandem Mass Spectra.
  15. Altmetric Badge
    Chapter 14 Bioinformatics Tools for the Discovery of New Nonribosomal Peptides
  16. Altmetric Badge
    Chapter 15 The Use of ClusterMine360 for the Analysis of Polyketide and Nonribosomal Peptide Biosynthetic Pathways.
  17. Altmetric Badge
    Chapter 16 Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.
  18. Altmetric Badge
    Chapter 17 Characterization of Nonribosomal Peptide Synthetases with NRPSsp.
Attention for Chapter 8: The Continuing Development of E. coli as a Heterologous Host for Complex Natural Product Biosynthesis
Altmetric Badge

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Continuing Development of E. coli as a Heterologous Host for Complex Natural Product Biosynthesis
Chapter number 8
Book title
Nonribosomal Peptide and Polyketide Biosynthesis
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3375-4_8
Pubmed ID
Book ISBNs
978-1-4939-3373-0, 978-1-4939-3375-4
Authors

Haoran Zhang, Lei Fang, Marcia S. Osburne, Blaine A. Pfeifer, Zhang, Haoran, Fang, Lei, Osburne, Marcia S., Pfeifer, Blaine A.

Abstract

Heterologous biosynthesis of natural products is meant to enable access to the vast array of valuable properties associated with these compounds. Often motivated by limitations inherent in native production hosts, the heterologous biosynthetic process begins with a candidate host regarded as technically advanced relative to original producing organisms. Given this requirement, E. coli has been a top choice for heterologous biosynthesis attempts as associated recombinant tools emerged and continue to develop. However, success requires overcoming challenges associated with natural product formation, including complex biosynthetic pathways and the need for metabolic support. These two challenges have been heavily featured in cellular engineering efforts completed to position E. coli as a viable surrogate host. This chapter outlines steps taken to engineer E. coli with an emphasis on genetic manipulations designed to support the heterologous production of polyketide, nonribosomal peptide, and similarly complex natural products.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 4%
Unknown 24 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 16%
Student > Master 4 16%
Researcher 3 12%
Student > Bachelor 2 8%
Lecturer 1 4%
Other 1 4%
Unknown 10 40%
Readers by discipline Count As %
Chemistry 4 16%
Biochemistry, Genetics and Molecular Biology 4 16%
Agricultural and Biological Sciences 3 12%
Unspecified 1 4%
Environmental Science 1 4%
Other 1 4%
Unknown 11 44%