↓ Skip to main content

Transient Receptor Potential (TRP) Channels

Overview of attention for book
Cover of 'Transient Receptor Potential (TRP) Channels'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 An Introduction on TRP Channels
  3. Altmetric Badge
    Chapter 2 TRPC1 Ca(2+)-permeable channels in animal cells.
  4. Altmetric Badge
    Chapter 3 TRPC2: molecular biology and functional importance.
  5. Altmetric Badge
    Chapter 4 TRPC3: a multifunctional, pore-forming signalling molecule.
  6. Altmetric Badge
    Chapter 5 Ionic channels formed by TRPC4.
  7. Altmetric Badge
    Chapter 6 Canonical transient receptor potential 5.
  8. Altmetric Badge
    Chapter 7 TRPC6.
  9. Altmetric Badge
    Chapter 8 TRPC7.
  10. Altmetric Badge
    Chapter 9 Capsaicin receptor: TRPV1 a promiscuous TRP channel.
  11. Altmetric Badge
    Chapter 10 2-Aminoethoxydiphenyl Borate as a Common Activator of TRPV1, TRPV2, and TRPV3 Channels
  12. Altmetric Badge
    Chapter 11 TRPV4.
  13. Altmetric Badge
    Chapter 12 TRPV5, the gateway to Ca2+ homeostasis.
  14. Altmetric Badge
    Chapter 13 TRPV6.
  15. Altmetric Badge
    Chapter 14 TRPM2.
  16. Altmetric Badge
    Chapter 15 TRPM3
  17. Altmetric Badge
    Chapter 16 Insights into TRPM4 function, regulation and physiological role.
  18. Altmetric Badge
    Chapter 17 TRPM5 and taste transduction.
  19. Altmetric Badge
    Chapter 18 TRPM6: A Janus-like protein.
  20. Altmetric Badge
    Chapter 19 The Mg2+ and Mg(2+)-nucleotide-regulated channel-kinase TRPM7.
  21. Altmetric Badge
    Chapter 20 TRPM8.
  22. Altmetric Badge
    Chapter 21 TRPA1.
  23. Altmetric Badge
    Chapter 22 TRPP2 channel regulation.
  24. Altmetric Badge
    Chapter 23 Know Thy Neighbor: A Survey of Diseases and Complex Syndromes that Map to Chromosomal Regions Encoding TRP Channels
  25. Altmetric Badge
    Chapter 24 TRP Channels of the Pancreatic Beta Cell
  26. Altmetric Badge
    Chapter 25 TRP Channels in Platelet Function
  27. Altmetric Badge
    Chapter 26 TRP Channels in Lymphocytes
  28. Altmetric Badge
    Chapter 27 Link Between TRPV Channels and Mast Cell Function
  29. Altmetric Badge
    Chapter 28 TRPV channels' role in osmotransduction and mechanotransduction.
  30. Altmetric Badge
    Chapter 29 Nociception and TRP Channels
  31. Altmetric Badge
    Chapter 30 Regulation of TRP Ion Channels by Phosphatidylinositol-4,5-Bisphosphate
  32. Altmetric Badge
    Chapter 31 TRPC, cGMP-Dependent Protein Kinases and Cytosolic Ca 2+
  33. Altmetric Badge
    Chapter 32 Trafficking of TRP Channels: Determinants of Channel Function
  34. Altmetric Badge
    Chapter 33 TRPC Channels: Interacting Proteins
  35. Altmetric Badge
    Chapter 34 TRPC Channels: Integrators of Multiple Cellular Signals
  36. Altmetric Badge
    Chapter 35 Phospholipase C-Coupled Receptors and Activation of TRPC Channels
  37. Altmetric Badge
    Chapter 36 Erratum
Attention for Chapter 12: TRPV5, the gateway to Ca2+ homeostasis.
Altmetric Badge

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
41 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
TRPV5, the gateway to Ca2+ homeostasis.
Chapter number 12
Book title
Transient Receptor Potential (TRP) Channels
Published in
Handbook of experimental pharmacology, January 2007
DOI 10.1007/978-3-540-34891-7_12
Pubmed ID
Book ISBNs
978-3-54-034889-4, 978-3-54-034891-7
Authors

A. R. Mensenkamp, J. G. J. Hoenderop, R. J. M. Bindels

Abstract

Ca2+ homeostasis in the body is tightly controlled, and is a balance between absorption in the intestine, excretion via the urine, and exchange from bone. Recently, the epithelial Ca2+ channel (TRPV5) has been identified as the gene responsible for the Ca2+ influx in epithelial cells of the renal distal convoluted tubule. TRPV5 is unique within the family of transient receptor potential (TRP) channels due to its high Ca2+ selectivity. Ca2+ flux through TRPV5 is controlled in three ways. First, TRPV5 gene expression is regulated by calciotropic hormones such as vitamin D3 and parathyroid hormone. Second, Ca2+ transport through TRPV5 is controlled by modulating channel activity. Intracellular Ca2+, for example, regulates channel activity by feedback inhibition. Third, TRPV5 is controlled by mobilization of the channel through trafficking toward the plasma membrane. The newly identified anti-aging hormone Klotho regulates TRPV5 by cleaving off sugar residues from the extracellular domain of the protein, resulting in a prolonged expression of TRPV5 at the plasma membrane. Inactivation of TRPV5 in mice leads to severe hypercalciuria, which is compensated by increased intestinal Ca2+ absorption due to augmented vitamin D3 levels. Furthermore, TRPV5 deficiency in mice is associated with polyuria, urine acidification, and reduced bone thickness. Some pharmaceutical compounds, such as the immunosuppressant FK506, affect the Ca2+ balance by modulating TRPV5 gene expression. This underlines the importance of elucidating the role of TRPV5 in Ca(2+)-related disorders, thereby enhancing the possibilities for pharmacological intervention. This chapter describes a unique TRP channel and highlights its regulation and function in renal Ca2+ reabsorption and overall Ca2+ homeostasis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
Czechia 1 2%
Unknown 39 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 27%
Student > Ph. D. Student 10 24%
Professor 7 17%
Professor > Associate Professor 5 12%
Student > Postgraduate 4 10%
Other 1 2%
Unknown 3 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 44%
Medicine and Dentistry 7 17%
Neuroscience 4 10%
Biochemistry, Genetics and Molecular Biology 3 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 4 10%
Unknown 4 10%