↓ Skip to main content

Transient Receptor Potential (TRP) Channels

Overview of attention for book
Cover of 'Transient Receptor Potential (TRP) Channels'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 An Introduction on TRP Channels
  3. Altmetric Badge
    Chapter 2 TRPC1 Ca(2+)-permeable channels in animal cells.
  4. Altmetric Badge
    Chapter 3 TRPC2: molecular biology and functional importance.
  5. Altmetric Badge
    Chapter 4 TRPC3: a multifunctional, pore-forming signalling molecule.
  6. Altmetric Badge
    Chapter 5 Ionic channels formed by TRPC4.
  7. Altmetric Badge
    Chapter 6 Canonical transient receptor potential 5.
  8. Altmetric Badge
    Chapter 7 TRPC6.
  9. Altmetric Badge
    Chapter 8 TRPC7.
  10. Altmetric Badge
    Chapter 9 Capsaicin receptor: TRPV1 a promiscuous TRP channel.
  11. Altmetric Badge
    Chapter 10 2-Aminoethoxydiphenyl Borate as a Common Activator of TRPV1, TRPV2, and TRPV3 Channels
  12. Altmetric Badge
    Chapter 11 TRPV4.
  13. Altmetric Badge
    Chapter 12 TRPV5, the gateway to Ca2+ homeostasis.
  14. Altmetric Badge
    Chapter 13 TRPV6.
  15. Altmetric Badge
    Chapter 14 TRPM2.
  16. Altmetric Badge
    Chapter 15 TRPM3
  17. Altmetric Badge
    Chapter 16 Insights into TRPM4 function, regulation and physiological role.
  18. Altmetric Badge
    Chapter 17 TRPM5 and taste transduction.
  19. Altmetric Badge
    Chapter 18 TRPM6: A Janus-like protein.
  20. Altmetric Badge
    Chapter 19 The Mg2+ and Mg(2+)-nucleotide-regulated channel-kinase TRPM7.
  21. Altmetric Badge
    Chapter 20 TRPM8.
  22. Altmetric Badge
    Chapter 21 TRPA1.
  23. Altmetric Badge
    Chapter 22 TRPP2 channel regulation.
  24. Altmetric Badge
    Chapter 23 Know Thy Neighbor: A Survey of Diseases and Complex Syndromes that Map to Chromosomal Regions Encoding TRP Channels
  25. Altmetric Badge
    Chapter 24 TRP Channels of the Pancreatic Beta Cell
  26. Altmetric Badge
    Chapter 25 TRP Channels in Platelet Function
  27. Altmetric Badge
    Chapter 26 TRP Channels in Lymphocytes
  28. Altmetric Badge
    Chapter 27 Link Between TRPV Channels and Mast Cell Function
  29. Altmetric Badge
    Chapter 28 TRPV channels' role in osmotransduction and mechanotransduction.
  30. Altmetric Badge
    Chapter 29 Nociception and TRP Channels
  31. Altmetric Badge
    Chapter 30 Regulation of TRP Ion Channels by Phosphatidylinositol-4,5-Bisphosphate
  32. Altmetric Badge
    Chapter 31 TRPC, cGMP-Dependent Protein Kinases and Cytosolic Ca 2+
  33. Altmetric Badge
    Chapter 32 Trafficking of TRP Channels: Determinants of Channel Function
  34. Altmetric Badge
    Chapter 33 TRPC Channels: Interacting Proteins
  35. Altmetric Badge
    Chapter 34 TRPC Channels: Integrators of Multiple Cellular Signals
  36. Altmetric Badge
    Chapter 35 Phospholipase C-Coupled Receptors and Activation of TRPC Channels
  37. Altmetric Badge
    Chapter 36 Erratum
Attention for Chapter 3: TRPC2: molecular biology and functional importance.
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#20 of 646)
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
8 news outlets
blogs
1 blog
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
TRPC2: molecular biology and functional importance.
Chapter number 3
Book title
Transient Receptor Potential (TRP) Channels
Published in
Handbook of experimental pharmacology, January 2007
DOI 10.1007/978-3-540-34891-7_3
Pubmed ID
Book ISBNs
978-3-54-034889-4, 978-3-54-034891-7
Authors

E. Yildirim, L. Birnbaumer, Yildirim E, Birnbaumer L, Yildirim, E., Birnbaumer, L.

Abstract

TRPC (canonical transient receptor potential) channels are the closest mammalian homologs of Drosophila TRP and TRP-like channels. TRPCs are rather nonselective Ca2+ permeable cation channels and affect cell functions through their ability to mediate Ca2+ entry into cells and their action to collapse the plasma membrane potentials. In neurons the latter function leads to action potentials. The mammalian genome codes for seven TRPCs of which TRPC2 is the largest with the most restricted pattern of expression and has several alternatively spliced variants. Expressed in model cells, TRPC2 mediates both receptor- and store depletion-triggered Ca2+ entry. TRPC2 is unique among TRPCs in that its complete gene has been lost from the Old World monkey and human genomes, in which its remnants constitute a pseudogene. Physiological roles for TRPC2 have been studied in mature sperm and the vomeronasal sensory system. In sperm, TRPC2 is activated by the sperm's interaction with the oocyte's zona pellucida, leading to entry of Ca2+ and activation of the acrosome reaction. In the vomeronasal sensory organ (VNO), TRPC2 was found to constitute the transduction channel activated through signaling cascade initiated by the interaction of pheromones with V1R and V2R G protein-coupled receptors on the dendrites of the sensory neurons. V1Rs and V2Rs, the latter working in conjunction with class I MHC molecules, activate G(i)- and G(o)-type G proteins which in turn trigger activation of TRPC2, initiating an axon potential that travels to the axonal terminals. The signal is then projected to the glomeruli of the auxiliary olfactory bulb from where it is carried first to the amygdala and then to higher cortical cognition centers. Immunocytochemistry and gene deletion studies have shown that (1) the V2R-G(o)-MHCIb-beta2m pathway mediates male aggressive behavior in response to pheromones; (2) the V1R-G(i2) pathway mediates mating partner recognition, and (3) these differences have an anatomical correlate in that these functional components are located in anatomically distinct compartments of the VNO. Interestingly, these anatomically segregated signaling pathways use a common transduction channel, TRPC2.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
United States 1 2%
Czechia 1 2%
Unknown 52 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 29%
Student > Ph. D. Student 9 16%
Student > Master 5 9%
Student > Bachelor 4 7%
Professor 4 7%
Other 8 15%
Unknown 9 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 33%
Biochemistry, Genetics and Molecular Biology 14 25%
Neuroscience 4 7%
Medicine and Dentistry 3 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 4 7%
Unknown 11 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 73. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2021.
All research outputs
#495,384
of 22,787,797 outputs
Outputs from Handbook of experimental pharmacology
#20
of 646 outputs
Outputs of similar age
#1,053
of 156,817 outputs
Outputs of similar age from Handbook of experimental pharmacology
#1
of 17 outputs
Altmetric has tracked 22,787,797 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 646 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 156,817 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.