↓ Skip to main content

Transient Receptor Potential (TRP) Channels

Overview of attention for book
Cover of 'Transient Receptor Potential (TRP) Channels'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 An Introduction on TRP Channels
  3. Altmetric Badge
    Chapter 2 TRPC1 Ca(2+)-permeable channels in animal cells.
  4. Altmetric Badge
    Chapter 3 TRPC2: molecular biology and functional importance.
  5. Altmetric Badge
    Chapter 4 TRPC3: a multifunctional, pore-forming signalling molecule.
  6. Altmetric Badge
    Chapter 5 Ionic channels formed by TRPC4.
  7. Altmetric Badge
    Chapter 6 Canonical transient receptor potential 5.
  8. Altmetric Badge
    Chapter 7 TRPC6.
  9. Altmetric Badge
    Chapter 8 TRPC7.
  10. Altmetric Badge
    Chapter 9 Capsaicin receptor: TRPV1 a promiscuous TRP channel.
  11. Altmetric Badge
    Chapter 10 2-Aminoethoxydiphenyl Borate as a Common Activator of TRPV1, TRPV2, and TRPV3 Channels
  12. Altmetric Badge
    Chapter 11 TRPV4.
  13. Altmetric Badge
    Chapter 12 TRPV5, the gateway to Ca2+ homeostasis.
  14. Altmetric Badge
    Chapter 13 TRPV6.
  15. Altmetric Badge
    Chapter 14 TRPM2.
  16. Altmetric Badge
    Chapter 15 TRPM3
  17. Altmetric Badge
    Chapter 16 Insights into TRPM4 function, regulation and physiological role.
  18. Altmetric Badge
    Chapter 17 TRPM5 and taste transduction.
  19. Altmetric Badge
    Chapter 18 TRPM6: A Janus-like protein.
  20. Altmetric Badge
    Chapter 19 The Mg2+ and Mg(2+)-nucleotide-regulated channel-kinase TRPM7.
  21. Altmetric Badge
    Chapter 20 TRPM8.
  22. Altmetric Badge
    Chapter 21 TRPA1.
  23. Altmetric Badge
    Chapter 22 TRPP2 channel regulation.
  24. Altmetric Badge
    Chapter 23 Know Thy Neighbor: A Survey of Diseases and Complex Syndromes that Map to Chromosomal Regions Encoding TRP Channels
  25. Altmetric Badge
    Chapter 24 TRP Channels of the Pancreatic Beta Cell
  26. Altmetric Badge
    Chapter 25 TRP Channels in Platelet Function
  27. Altmetric Badge
    Chapter 26 TRP Channels in Lymphocytes
  28. Altmetric Badge
    Chapter 27 Link Between TRPV Channels and Mast Cell Function
  29. Altmetric Badge
    Chapter 28 TRPV channels' role in osmotransduction and mechanotransduction.
  30. Altmetric Badge
    Chapter 29 Nociception and TRP Channels
  31. Altmetric Badge
    Chapter 30 Regulation of TRP Ion Channels by Phosphatidylinositol-4,5-Bisphosphate
  32. Altmetric Badge
    Chapter 31 TRPC, cGMP-Dependent Protein Kinases and Cytosolic Ca 2+
  33. Altmetric Badge
    Chapter 32 Trafficking of TRP Channels: Determinants of Channel Function
  34. Altmetric Badge
    Chapter 33 TRPC Channels: Interacting Proteins
  35. Altmetric Badge
    Chapter 34 TRPC Channels: Integrators of Multiple Cellular Signals
  36. Altmetric Badge
    Chapter 35 Phospholipase C-Coupled Receptors and Activation of TRPC Channels
  37. Altmetric Badge
    Chapter 36 Erratum
Attention for Chapter 6: Canonical transient receptor potential 5.
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (56th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

wikipedia
3 Wikipedia pages

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Canonical transient receptor potential 5.
Chapter number 6
Book title
Transient Receptor Potential (TRP) Channels
Published in
Handbook of experimental pharmacology, February 2016
DOI 10.1007/978-3-540-34891-7_6
Pubmed ID
Book ISBNs
978-3-54-034889-4, 978-3-54-034891-7
Authors

D. J. Beech, Beech, D. J.

Abstract

Canonical transient receptor potential 5 TRPC5 (also TrpC5, trp-5 or trp5) is one of the seven mammalian TRPC proteins. Its known functional property is that of a mixed cationic plasma membrane channel with calcium permeability. It is active alone or as a heteromultimeric assembly with TRPC1; TRPC4 and TRPC3 may also be involved. Multiple activators of TRPC5 are emerging, including various G protein-coupled receptor agonists, lysophospholipids, lanthanide ions and, in some contexts, calcium store depletion. Intracellular calcium has complex impact on TRPC5, including a permissive role for other activators, as well as inhibition at high concentrations. Protein kinase C is inhibitory and mediates desensitisation following receptor activation. Tonic TRPC5 activity is detected and may reflect the presence of constitutive activation signals. The channel has voltage dependence but the biological significance of this is unknown; it is partially due to intracellular magnesium blockade at aspartic acid residue 633. Protein partners include calmodulin, CaBP1, enkurin, Na(+)-H+ exchange regulatory factor (NHERF) and stathmin. TRPC5 is included in local vesicular trafficking regulated by growth factors through phosphatidylinositol (PI)-3-kinase, Rac1 and PIP-5-kinase. Inhibition of myosin light chain kinase suppresses TRPC5, possibly via an effect on trafficking. Biological roles of TRPC5 are emerging but more reports on this aspect are needed. One proposed role is as a mediator of calcium entry and excitation in smooth muscle, another as an inhibitor of neuronal growth cone extension. The latter is intriguing in view of the original cloning of the human TRPC5 gene from a region of the X chromosome linked to mental retardation. TRPC5 is a broadly expressed calcium channel with capability to act as an integrator of extracellular and intracellular signals at the level of calcium entry.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
United States 1 2%
Czechia 1 2%
Unknown 38 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 29%
Student > Ph. D. Student 8 20%
Professor 5 12%
Student > Master 4 10%
Student > Postgraduate 2 5%
Other 4 10%
Unknown 6 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 37%
Biochemistry, Genetics and Molecular Biology 8 20%
Medicine and Dentistry 4 10%
Neuroscience 4 10%
Psychology 1 2%
Other 3 7%
Unknown 6 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 May 2023.
All research outputs
#7,453,827
of 22,787,797 outputs
Outputs from Handbook of experimental pharmacology
#225
of 646 outputs
Outputs of similar age
#125,788
of 396,929 outputs
Outputs of similar age from Handbook of experimental pharmacology
#21
of 51 outputs
Altmetric has tracked 22,787,797 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 646 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,929 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.