↓ Skip to main content

Transient Receptor Potential (TRP) Channels

Overview of attention for book
Cover of 'Transient Receptor Potential (TRP) Channels'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 An Introduction on TRP Channels
  3. Altmetric Badge
    Chapter 2 TRPC1 Ca(2+)-permeable channels in animal cells.
  4. Altmetric Badge
    Chapter 3 TRPC2: molecular biology and functional importance.
  5. Altmetric Badge
    Chapter 4 TRPC3: a multifunctional, pore-forming signalling molecule.
  6. Altmetric Badge
    Chapter 5 Ionic channels formed by TRPC4.
  7. Altmetric Badge
    Chapter 6 Canonical transient receptor potential 5.
  8. Altmetric Badge
    Chapter 7 TRPC6.
  9. Altmetric Badge
    Chapter 8 TRPC7.
  10. Altmetric Badge
    Chapter 9 Capsaicin receptor: TRPV1 a promiscuous TRP channel.
  11. Altmetric Badge
    Chapter 10 2-Aminoethoxydiphenyl Borate as a Common Activator of TRPV1, TRPV2, and TRPV3 Channels
  12. Altmetric Badge
    Chapter 11 TRPV4.
  13. Altmetric Badge
    Chapter 12 TRPV5, the gateway to Ca2+ homeostasis.
  14. Altmetric Badge
    Chapter 13 TRPV6.
  15. Altmetric Badge
    Chapter 14 TRPM2.
  16. Altmetric Badge
    Chapter 15 TRPM3
  17. Altmetric Badge
    Chapter 16 Insights into TRPM4 function, regulation and physiological role.
  18. Altmetric Badge
    Chapter 17 TRPM5 and taste transduction.
  19. Altmetric Badge
    Chapter 18 TRPM6: A Janus-like protein.
  20. Altmetric Badge
    Chapter 19 The Mg2+ and Mg(2+)-nucleotide-regulated channel-kinase TRPM7.
  21. Altmetric Badge
    Chapter 20 TRPM8.
  22. Altmetric Badge
    Chapter 21 TRPA1.
  23. Altmetric Badge
    Chapter 22 TRPP2 channel regulation.
  24. Altmetric Badge
    Chapter 23 Know Thy Neighbor: A Survey of Diseases and Complex Syndromes that Map to Chromosomal Regions Encoding TRP Channels
  25. Altmetric Badge
    Chapter 24 TRP Channels of the Pancreatic Beta Cell
  26. Altmetric Badge
    Chapter 25 TRP Channels in Platelet Function
  27. Altmetric Badge
    Chapter 26 TRP Channels in Lymphocytes
  28. Altmetric Badge
    Chapter 27 Link Between TRPV Channels and Mast Cell Function
  29. Altmetric Badge
    Chapter 28 TRPV channels' role in osmotransduction and mechanotransduction.
  30. Altmetric Badge
    Chapter 29 Nociception and TRP Channels
  31. Altmetric Badge
    Chapter 30 Regulation of TRP Ion Channels by Phosphatidylinositol-4,5-Bisphosphate
  32. Altmetric Badge
    Chapter 31 TRPC, cGMP-Dependent Protein Kinases and Cytosolic Ca 2+
  33. Altmetric Badge
    Chapter 32 Trafficking of TRP Channels: Determinants of Channel Function
  34. Altmetric Badge
    Chapter 33 TRPC Channels: Interacting Proteins
  35. Altmetric Badge
    Chapter 34 TRPC Channels: Integrators of Multiple Cellular Signals
  36. Altmetric Badge
    Chapter 35 Phospholipase C-Coupled Receptors and Activation of TRPC Channels
  37. Altmetric Badge
    Chapter 36 Erratum
Attention for Chapter 17: TRPM5 and taste transduction.
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#42 of 667)
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
2 news outlets
blogs
1 blog
twitter
1 X user
wikipedia
3 Wikipedia pages

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
TRPM5 and taste transduction.
Chapter number 17
Book title
Transient Receptor Potential (TRP) Channels
Published in
Handbook of experimental pharmacology, January 2007
DOI 10.1007/978-3-540-34891-7_17
Pubmed ID
Book ISBNs
978-3-54-034889-4, 978-3-54-034891-7
Authors

E. R. Liman, Liman, E. R.

Abstract

TRPM5 is a cation channel that it is essential for transduction of bitter, sweet and umami tastes. Signaling of these tastes involves the activation of G protein-coupled receptors that stimulate phospholipase C (PLC) beta2, leading to the breakdown of phosphatidylinositol bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3), and release of Ca2+ from intracellular stores. TRPM5 forms a nonselective cation channel that is directly activated by Ca2+ and it is likely to be the downstream target of this signaling cascade. Therefore, study of TRPM5 promises to provide insight into fundamental mechanisms of taste transduction. This review highlights recent work on the mechanisms of activation of the TRPM5 channel. The mouse TRPM5 gene encodes a protein of 1,158 amino acids that is proposed to have six transmembrane domains and to function as a tetramer. TRPM5 is structurally most closely related to the Ca(2+)-activated channel TRPM4 and it is more distantly related to the cold-activated channel TRPM8. In patch clamp recordings, TRPM5 channels are activated by micromolar concentrations of Ca2+ and are permeable to monovalent but not divalent cations. TRPM5 channel activity is strongly regulated by voltage, phosphoinositides and temperature, and is blocked by acid pH. Study of TRPM4 and TRPM8, which show similar modes of regulation, has yielded insights into possible structural domains of TRPM5. Understanding the structural basis for TRPM5 function will ultimately allow the design of pharmaceuticals to enhance or interfere with taste sensations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Spain 1 2%
United States 1 2%
Germany 1 2%
Unknown 56 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 25%
Student > Ph. D. Student 8 13%
Professor 6 10%
Student > Master 6 10%
Professor > Associate Professor 5 8%
Other 11 18%
Unknown 9 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 35%
Medicine and Dentistry 9 15%
Biochemistry, Genetics and Molecular Biology 6 10%
Neuroscience 4 7%
Linguistics 1 2%
Other 8 13%
Unknown 11 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 29. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2022.
All research outputs
#1,267,944
of 24,246,771 outputs
Outputs from Handbook of experimental pharmacology
#42
of 667 outputs
Outputs of similar age
#3,451
of 163,051 outputs
Outputs of similar age from Handbook of experimental pharmacology
#2
of 17 outputs
Altmetric has tracked 24,246,771 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 667 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 163,051 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.