↓ Skip to main content

Disease Gene Identification

Overview of attention for book
Cover of 'Disease Gene Identification'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Identification of Disease Susceptibility Alleles in the Next Generation Sequencing Era
  3. Altmetric Badge
    Chapter 2 Induced Pluripotent Stem Cells in Disease Modeling and Gene Identification
  4. Altmetric Badge
    Chapter 3 Development of Targeted Therapies Based on Gene Modification
  5. Altmetric Badge
    Chapter 4 What Can We Learn About Human Disease from the Nematode C. elegans?
  6. Altmetric Badge
    Chapter 5 Microbiome Sequencing Methods for Studying Human Diseases
  7. Altmetric Badge
    Chapter 6 The Emerging Role of Long Noncoding RNAs in Human Disease
  8. Altmetric Badge
    Chapter 7 Identification of Disease-Related Genes Using a Genome-Wide Association Study Approach
  9. Altmetric Badge
    Chapter 8 Whole Genome Library Construction for Next Generation Sequencing
  10. Altmetric Badge
    Chapter 9 Whole Exome Library Construction for Next Generation Sequencing
  11. Altmetric Badge
    Chapter 10 Optimized Methodology for the Generation of RNA-Sequencing Libraries from Low-Input Starting Material: Enabling Analysis of Specialized Cell Types and Clinical Samples
  12. Altmetric Badge
    Chapter 11 Using Fluidigm C1 to Generate Single-Cell Full-Length cDNA Libraries for mRNA Sequencing
  13. Altmetric Badge
    Chapter 12 MiSeq: A Next Generation Sequencing Platform for Genomic Analysis
  14. Altmetric Badge
    Chapter 13 Methods for CpG Methylation Array Profiling Via Bisulfite Conversion
  15. Altmetric Badge
    Chapter 14 miRNA Quantification Method Using Quantitative Polymerase Chain Reaction in Conjunction with C q Method
  16. Altmetric Badge
    Chapter 15 Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9
  17. Altmetric Badge
    Chapter 16 RNA Interference to Knock Down Gene Expression
  18. Altmetric Badge
    Chapter 17 Using Luciferase Reporter Assays to Identify Functional Variants at Disease-Associated Loci
  19. Altmetric Badge
    Chapter 18 Physiologic Interpretation of GWAS Signals for Type 2 Diabetes
  20. Altmetric Badge
    Chapter 19 Identification of Genes for Hereditary Hemochromatosis
  21. Altmetric Badge
    Chapter 20 Identification of Driver Mutations in Rare Cancers: The Role of SMARCA4 in Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT)
  22. Altmetric Badge
    Chapter 21 The Rise and Fall and Rise of Linkage Analysis as a Technique for Finding and Characterizing Inherited Influences on Disease Expression
Attention for Chapter 11: Using Fluidigm C1 to Generate Single-Cell Full-Length cDNA Libraries for mRNA Sequencing
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

twitter
3 X users
patent
1 patent

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Using Fluidigm C1 to Generate Single-Cell Full-Length cDNA Libraries for mRNA Sequencing
Chapter number 11
Book title
Disease Gene Identification
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7471-9_11
Pubmed ID
Book ISBNs
978-1-4939-7470-2, 978-1-4939-7471-9
Authors

Robert Durruthy-Durruthy, Manisha Ray, Durruthy-Durruthy, Robert, Ray, Manisha

Abstract

Single-cell RNA sequencing has evolved into a benchmark application to study cellular heterogeneity, advancing our understanding of cellular differentiation, disease progression, and gene regulation in a multitude of research areas. The generation of high-quality cDNA, an important step in the experimental workflow when generating sequence-ready libraries, is critical to maximizing data quality. Here we describe a strategy that uses a microfluidic device (i.e., the C1™ IFC) to synthesize full-length cDNA from single cells in a fully automated, nanoliter-scale format. The device also facilitates confirmation of the presence of a single, viable cell and recording of phenotypic information, quality control measures that are crucial for streamlining downstream data processing and enhancing overall data validity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 21%
Student > Bachelor 9 19%
Student > Ph. D. Student 8 17%
Researcher 5 11%
Other 1 2%
Other 3 6%
Unknown 11 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 34%
Agricultural and Biological Sciences 8 17%
Medicine and Dentistry 2 4%
Immunology and Microbiology 2 4%
Chemistry 2 4%
Other 3 6%
Unknown 14 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2022.
All research outputs
#6,268,596
of 24,690,130 outputs
Outputs from Methods in molecular biology
#1,722
of 13,876 outputs
Outputs of similar age
#117,238
of 452,958 outputs
Outputs of similar age from Methods in molecular biology
#144
of 1,486 outputs
Altmetric has tracked 24,690,130 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 13,876 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 452,958 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 1,486 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.