↓ Skip to main content

Disease Gene Identification

Overview of attention for book
Cover of 'Disease Gene Identification'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Identification of Disease Susceptibility Alleles in the Next Generation Sequencing Era
  3. Altmetric Badge
    Chapter 2 Induced Pluripotent Stem Cells in Disease Modeling and Gene Identification
  4. Altmetric Badge
    Chapter 3 Development of Targeted Therapies Based on Gene Modification
  5. Altmetric Badge
    Chapter 4 What Can We Learn About Human Disease from the Nematode C. elegans?
  6. Altmetric Badge
    Chapter 5 Microbiome Sequencing Methods for Studying Human Diseases
  7. Altmetric Badge
    Chapter 6 The Emerging Role of Long Noncoding RNAs in Human Disease
  8. Altmetric Badge
    Chapter 7 Identification of Disease-Related Genes Using a Genome-Wide Association Study Approach
  9. Altmetric Badge
    Chapter 8 Whole Genome Library Construction for Next Generation Sequencing
  10. Altmetric Badge
    Chapter 9 Whole Exome Library Construction for Next Generation Sequencing
  11. Altmetric Badge
    Chapter 10 Optimized Methodology for the Generation of RNA-Sequencing Libraries from Low-Input Starting Material: Enabling Analysis of Specialized Cell Types and Clinical Samples
  12. Altmetric Badge
    Chapter 11 Using Fluidigm C1 to Generate Single-Cell Full-Length cDNA Libraries for mRNA Sequencing
  13. Altmetric Badge
    Chapter 12 MiSeq: A Next Generation Sequencing Platform for Genomic Analysis
  14. Altmetric Badge
    Chapter 13 Methods for CpG Methylation Array Profiling Via Bisulfite Conversion
  15. Altmetric Badge
    Chapter 14 miRNA Quantification Method Using Quantitative Polymerase Chain Reaction in Conjunction with C q Method
  16. Altmetric Badge
    Chapter 15 Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9
  17. Altmetric Badge
    Chapter 16 RNA Interference to Knock Down Gene Expression
  18. Altmetric Badge
    Chapter 17 Using Luciferase Reporter Assays to Identify Functional Variants at Disease-Associated Loci
  19. Altmetric Badge
    Chapter 18 Physiologic Interpretation of GWAS Signals for Type 2 Diabetes
  20. Altmetric Badge
    Chapter 19 Identification of Genes for Hereditary Hemochromatosis
  21. Altmetric Badge
    Chapter 20 Identification of Driver Mutations in Rare Cancers: The Role of SMARCA4 in Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT)
  22. Altmetric Badge
    Chapter 21 The Rise and Fall and Rise of Linkage Analysis as a Technique for Finding and Characterizing Inherited Influences on Disease Expression
Attention for Chapter 14: miRNA Quantification Method Using Quantitative Polymerase Chain Reaction in Conjunction with C q Method
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
miRNA Quantification Method Using Quantitative Polymerase Chain Reaction in Conjunction with C q Method
Chapter number 14
Book title
Disease Gene Identification
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7471-9_14
Pubmed ID
Book ISBNs
978-1-4939-7470-2, 978-1-4939-7471-9
Authors

Fatjon Leti, Johanna K. DiStefano

Abstract

MicroRNAs are small noncoding RNAs that function to regulate gene expression. In general, miRNAs are posttranscriptional regulators that imperfectly bind to the 3'untranslated region (3'UTR) of target mRNAs bearing complementary sequences, and target more than half of all protein-coding genes in the human genome. The dysregulation of miRNA expression and activity has been linked with numerous diseases, including cancer, cardiovascular diseases, neurodegenerative disorders, and diabetes. To better understand the relationship between miRNAs and human disease, a variety of techniques have been used to measure and validate miRNA expression in many cells, tissues, body fluids, and organs. For many years, quantitative polymerase chain reaction (qPCR) has been the gold standard for measuring relative gene expression, and is now also widely used to assess miRNA abundance. In this chapter, we describe a quick protocol for miRNA extraction, reverse transcription, qPCR, and data analysis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 21%
Researcher 2 11%
Professor > Associate Professor 1 5%
Unknown 12 63%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 26%
Business, Management and Accounting 1 5%
Agricultural and Biological Sciences 1 5%
Economics, Econometrics and Finance 1 5%
Neuroscience 1 5%
Other 0 0%
Unknown 10 53%