↓ Skip to main content

Ion Channels

Overview of attention for book
Cover of 'Ion Channels'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Approaches to Cloning of Pain-Related Ion Channel Genes
  3. Altmetric Badge
    Chapter 2 Mammalian Expression Systems and Transfection Techniques
  4. Altmetric Badge
    Chapter 3 Ion Channels
  5. Altmetric Badge
    Chapter 4 Transient Overexpression of Genes in Neurons Using Nucleofection
  6. Altmetric Badge
    Chapter 5 Viral Gene Delivery: Optimized Protocol for Production of High Titer Lentiviral Vectors
  7. Altmetric Badge
    Chapter 6 Two-electrode voltage clamp.
  8. Altmetric Badge
    Chapter 7 Conventional Micropipette-Based Patch Clamp Techniques
  9. Altmetric Badge
    Chapter 8 Recording of Ion Channel Activity in Planar Lipid Bilayer Experiments
  10. Altmetric Badge
    Chapter 9 Recording Macroscopic Currents in Large Patches from Xenopus Oocytes
  11. Altmetric Badge
    Chapter 10 Combined Single-Channel and Macroscopic Recording Techniques to Analyze Gating Mechanisms of the Large Conductance Ca 2+ and Voltage Activated (BK) Potassium Channel
  12. Altmetric Badge
    Chapter 11 Perforated Whole-Cell Patch-Clamp Recording
  13. Altmetric Badge
    Chapter 12 Piezo-Electrically Driven Mechanical Stimulation of Sensory Neurons
  14. Altmetric Badge
    Chapter 13 Automated planar patch-clamp.
  15. Altmetric Badge
    Chapter 14 Recording single-channel currents using "smart patch-clamp" technique.
  16. Altmetric Badge
    Chapter 15 Using Total Internal Reflection Fluorescence Microscopy to Observe Ion Channel Trafficking and Assembly
  17. Altmetric Badge
    Chapter 16 Förster resonance energy transfer-based imaging at the cell surface of live cells.
  18. Altmetric Badge
    Chapter 17 The Use of Dansyl-Calmodulin to Study Interactions with Channels and Other Proteins
  19. Altmetric Badge
    Chapter 18 Imaging and Quantification of Recycled K ATP Channels
  20. Altmetric Badge
    Chapter 19 Generation of Antibodies That Are Externally Acting Isoform-Specific Inhibitors of Ion Channels
  21. Altmetric Badge
    Chapter 20 Site-Directed Mutagenesis to Study the Structure–Function Relationships of Ion Channels
  22. Altmetric Badge
    Chapter 21 Cysteine-Based Cross-Linking Approach to Study Inter-domain Interactions in Ion Channels
  23. Altmetric Badge
    Chapter 22 Analysis of Ca 2+ -Binding Sites in the MthK RCK Domain by X-Ray Crystallography
  24. Altmetric Badge
    Chapter 23 Isotope Labeling Strategies for Analysis of an Ion Channel Cytoplasmic Domain by NMR Spectroscopy
  25. Altmetric Badge
    Chapter 24 Recording Dendritic Ion Channel Properties and Function from Cortical Neurons
  26. Altmetric Badge
    Chapter 25 M-Current Recording from Acute DRG Slices
  27. Altmetric Badge
    Chapter 26 Studying Ion Channels in Human Erythrocytes by Direct and Indirect Means
  28. Altmetric Badge
    Chapter 27 Recording Ion Channels in Isolated, Split-Opened Tubules
  29. Altmetric Badge
    Chapter 28 Single-Channel Analysis of TRPC Channels in the Podocytes of Freshly Isolated Glomeruli
  30. Altmetric Badge
    Chapter 29 Ca 2+ Imaging as a Tool to Assess TRP Channel Function in Murine Distal Nephrons
  31. Altmetric Badge
    Chapter 30 Patch-clamping Drosophila sensory neurons.
  32. Altmetric Badge
    Chapter 31 Production and Validation of Recombinant Adeno-Associated Virus for Channelrhodopsin Expression in Neurons
  33. Altmetric Badge
    Chapter 32 Optical Control of Ligand-Gated Ion Channels
Attention for Chapter 6: Two-electrode voltage clamp.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

wikipedia
1 Wikipedia page

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
132 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Two-electrode voltage clamp.
Chapter number 6
Book title
Ion Channels
Published in
Methods in molecular biology, March 2013
DOI 10.1007/978-1-62703-351-0_6
Pubmed ID
Book ISBNs
978-1-62703-350-3, 978-1-62703-351-0
Authors

Guan B, Chen X, Zhang H, Bingcai Guan, Xingjuan Chen, Hailin Zhang, Guan, Bingcai, Chen, Xingjuan, Zhang, Hailin

Abstract

Two-electrode voltage clamp (TEVC) is a conventional electrophysiological technique used to artificially control the membrane potential (V m) of large cells to study the properties of electrogenic membrane proteins, especially ion channels. It makes use of two intracellular electrodes-a voltage electrode as V m sensor and a current electrode for current injection to adjust the V m, thus setting the membrane potential at desired values and recording the membrane current to analyze ion channel activities. Here we describe the use of TEVC in combination with exogenous mRNA expression in Xenopus oocytes for ion channel recording.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 132 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 131 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 26 20%
Student > Bachelor 23 17%
Student > Ph. D. Student 16 12%
Researcher 10 8%
Student > Doctoral Student 8 6%
Other 13 10%
Unknown 36 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 23%
Biochemistry, Genetics and Molecular Biology 19 14%
Pharmacology, Toxicology and Pharmaceutical Science 13 10%
Neuroscience 10 8%
Chemistry 10 8%
Other 13 10%
Unknown 37 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 November 2014.
All research outputs
#8,065,009
of 24,226,848 outputs
Outputs from Methods in molecular biology
#2,498
of 13,632 outputs
Outputs of similar age
#67,749
of 201,105 outputs
Outputs of similar age from Methods in molecular biology
#14
of 37 outputs
Altmetric has tracked 24,226,848 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,632 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 201,105 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.