↓ Skip to main content

Metabolic Network Reconstruction and Modeling

Overview of attention for book
Cover of 'Metabolic Network Reconstruction and Modeling'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Reconstructing High-Quality Large-Scale Metabolic Models with merlin
  3. Altmetric Badge
    Chapter 2 Analyzing and Designing Cell Factories with OptFlux
  4. Altmetric Badge
    Chapter 3 The MONGOOSE Rational Arithmetic Toolbox
  5. Altmetric Badge
    Chapter 4 The FASTCORE Family: For the Fast Reconstruction of Compact Context-Specific Metabolic Networks Models
  6. Altmetric Badge
    Chapter 5 Reconstruction and Analysis of Central Metabolism in Microbes
  7. Altmetric Badge
    Chapter 6 Using PSAMM for the Curation and Analysis of Genome-Scale Metabolic Models
  8. Altmetric Badge
    Chapter 7 Integration of Comparative Genomics with Genome-Scale Metabolic Modeling to Investigate Strain-Specific Phenotypical Differences
  9. Altmetric Badge
    Chapter 8 Template-Assisted Metabolic Reconstruction and Assembly of Hybrid Bacterial Models
  10. Altmetric Badge
    Chapter 9 Integrated Host-Pathogen Metabolic Reconstructions
  11. Altmetric Badge
    Chapter 10 Metabolic Model Reconstruction and Analysis of an Artificial Microbial Ecosystem
  12. Altmetric Badge
    Chapter 11 RNA Sequencing and Analysis in Microorganisms for Metabolic Network Reconstruction
  13. Altmetric Badge
    Chapter 12 Differential Proteomics Based on 2D-Difference In-Gel Electrophoresis and Tandem Mass Spectrometry for the Elucidation of Biological Processes in Antibiotic-Producer Bacterial Strains
  14. Altmetric Badge
    Chapter 13 Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions
  15. Altmetric Badge
    Chapter 14 Computational Prediction of Synthetic Lethals in Genome-Scale Metabolic Models Using Fast-SL
  16. Altmetric Badge
    Chapter 15 Coupling Fluxes, Enzymes, and Regulation in Genome-Scale Metabolic Models
  17. Altmetric Badge
    Chapter 16 Dynamic Flux Balance Analysis Using DFBAlab
  18. Altmetric Badge
    Chapter 17 Designing Optimized Production Hosts by Metabolic Modeling
  19. Altmetric Badge
    Chapter 18 Optimization of Multi-Omic Genome-Scale Models: Methodologies, Hands-on Tutorial, and Perspectives
Attention for Chapter 17: Designing Optimized Production Hosts by Metabolic Modeling
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
9 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Designing Optimized Production Hosts by Metabolic Modeling
Chapter number 17
Book title
Metabolic Network Reconstruction and Modeling
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7528-0_17
Pubmed ID
Book ISBNs
978-1-4939-7527-3, 978-1-4939-7528-0
Authors

Christian Jungreuthmayer, Matthias P. Gerstl, David A. Peña Navarro, Michael Hanscho, David E. Ruckerbauer, Jürgen Zanghellini

Abstract

Many of the complex and expensive production steps in the chemical industry are readily available in living cells. In order to overcome the metabolic limits of these cells, the optimal genetic intervention strategies can be computed by the use of metabolic modeling. Elementary flux mode analysis (EFMA) is an ideal tool for this task, as it does not require defining a cellular objective function. We present two EFMA-based methods to optimize production hosts: (1) the standard approach that can only be used for small and medium scale metabolic networks and (2) the advanced dual system approach that can be utilized to directly compute intervention strategies in a genome-scale metabolic model.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Student > Master 2 22%
Student > Doctoral Student 1 11%
Student > Ph. D. Student 1 11%
Lecturer > Senior Lecturer 1 11%
Other 1 11%
Unknown 1 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 22%
Biochemistry, Genetics and Molecular Biology 2 22%
Environmental Science 1 11%
Computer Science 1 11%
Engineering 1 11%
Other 0 0%
Unknown 2 22%