↓ Skip to main content

Flow Cytometry Protocols

Overview of attention for book
Flow Cytometry Protocols
Humana Press, New York, NY

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Flow Cytometry: The Glass Is Half Full
  3. Altmetric Badge
    Chapter 2 High-Dimensional Modeling for Cytometry: Building Rock Solid Models Using GemStone™ and Verity Cen-se’™ High-Definition t-SNE Mapping
  4. Altmetric Badge
    Chapter 3 Mass Cytometry Assays for Antigen-Specific T Cells Using CyTOF
  5. Altmetric Badge
    Chapter 4 RNA Flow Cytometry Using the Branched DNA Technique
  6. Altmetric Badge
    Chapter 5 Analysis of Individual Extracellular Vesicles by Flow Cytometry
  7. Altmetric Badge
    Chapter 6 Quantitative Fluorescence Measurements with Multicolor Flow Cytometry
  8. Altmetric Badge
    Chapter 7 High Throughput Flow Cytometry for Cell Surface Profiling
  9. Altmetric Badge
    Chapter 8 Multiparameter Conventional Flow Cytometry
  10. Altmetric Badge
    Chapter 9 Multiparameter Intracellular Cytokine Staining
  11. Altmetric Badge
    Chapter 10 Multiparametric Analysis of Apoptosis by Flow Cytometry
  12. Altmetric Badge
    Chapter 11 Multiparameter Cell Cycle Analysis
  13. Altmetric Badge
    Chapter 12 Monitoring Cell Proliferation by Dye Dilution: Considerations for Probe Selection
  14. Altmetric Badge
    Chapter 13 Immunophenotypic Identification of Early Myeloerythroid Development
  15. Altmetric Badge
    Chapter 14 Flow Cytometry Assays in Primary Immunodeficiency Diseases
  16. Altmetric Badge
    Chapter 15 Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells
  17. Altmetric Badge
    Chapter 16 Nuclear Cytometry: Analysis of the Patterns of DNA Synthesis and Transcription Using Flow Cytometry, Confocal Microscopy, and RNA Sequencing
  18. Altmetric Badge
    Chapter 17 Flow Cytometric FRET Analysis of Protein Interactions
  19. Altmetric Badge
    Chapter 18 Overview of Fluorescence Lifetime Measurements in Flow Cytometry
  20. Altmetric Badge
    Chapter 19 Overview of Lasers for Flow Cytometry
  21. Altmetric Badge
    Chapter 20 Flow Cytometry: The Glass Is Half Empty
Attention for Chapter 16: Nuclear Cytometry: Analysis of the Patterns of DNA Synthesis and Transcription Using Flow Cytometry, Confocal Microscopy, and RNA Sequencing
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Nuclear Cytometry: Analysis of the Patterns of DNA Synthesis and Transcription Using Flow Cytometry, Confocal Microscopy, and RNA Sequencing
Chapter number 16
Book title
Flow Cytometry Protocols
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7346-0_16
Pubmed ID
Book ISBNs
978-1-4939-7344-6, 978-1-4939-7346-0
Authors

David W. Galbraith, Elwira Sliwinska, Partha Samadder

Abstract

Eukaryotes are defined by cells that contain a nucleus and other membrane-bound organelles. Cytometric analysis in situ, utilizing imaging, provides a useful understanding of the structure and function of the various subcellular components, particularly when combined with methods that preserve the living state. In terms of information provided by the observation of eukaryotic nuclei, imaging has provided a wealth of information about cellular multiplication. When organisms are present in multicellular form (tissues and organs), this property does not generally confound imaging cytometry. Multicellular eukaryotic species present immediate problems when being considered for analysis using flow cytometry which requires suspensions of single particles. Although some eukaryotic cell types exist as natural single cell suspensions (cf. the erythropoietic system), for other tissues and organs, strategies are required to produce single particle suspensions. This chapter illustrates the application of flow cytometry combined with confocal microscopy to analyze complex organs, focusing on properties of the plant nucleus, and then goes on to describe how suspensions of nuclei can be prepared from tissues and organs, and used for flow cytometric analysis of cellular and transcriptional states. The application of these techniques to animal species is also discussed with the implication that this strategy is universally applicable for the characterization of nuclei within tissues that cannot readily be converted into suspensions of cells.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 17%
Student > Ph. D. Student 1 17%
Student > Bachelor 1 17%
Student > Doctoral Student 1 17%
Unknown 2 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 50%
Immunology and Microbiology 1 17%
Unknown 2 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 June 2018.
All research outputs
#13,721,250
of 23,263,851 outputs
Outputs from Methods in molecular biology
#3,707
of 13,319 outputs
Outputs of similar age
#221,400
of 443,685 outputs
Outputs of similar age from Methods in molecular biology
#355
of 1,501 outputs
Altmetric has tracked 23,263,851 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,319 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,685 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,501 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.