↓ Skip to main content

Exercise for Cardiovascular Disease Prevention and Treatment

Overview of attention for book
Cover of 'Exercise for Cardiovascular Disease Prevention and Treatment'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Physical Inactivity and the Economic and Health Burdens Due to Cardiovascular Disease: Exercise as Medicine
  3. Altmetric Badge
    Chapter 2 Acute and Chronic Response to Exercise in Athletes: The “Supernormal Heart”
  4. Altmetric Badge
    Chapter 3 The Effects of Exercise on Cardiovascular Biomarkers: New Insights, Recent Data, and Applications
  5. Altmetric Badge
    Chapter 4 Acute and Chronic Exercise in Animal Models
  6. Altmetric Badge
    Chapter 5 Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes to Chronic Exercise
  7. Altmetric Badge
    Chapter 6 Formation of New Cardiomyocytes in Exercise
  8. Altmetric Badge
    Chapter 7 Physical Exercise Can Spur Beneficial Neoangiogenesis and Microvasculature Remodeling Within the Heart – Our Salvation?
  9. Altmetric Badge
    Chapter 8 The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling
  10. Altmetric Badge
    Chapter 9 Myocardial Infarction and Exercise Training: Evidence from Basic Science
  11. Altmetric Badge
    Chapter 10 Cardiac Ischemia/Reperfusion Injury: The Beneficial Effects of Exercise
  12. Altmetric Badge
    Chapter 11 Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure
  13. Altmetric Badge
    Chapter 12 Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms
  14. Altmetric Badge
    Chapter 13 Cardiac Aging – Benefits of Exercise, Nrf2 Activation and Antioxidant Signaling
  15. Altmetric Badge
    Chapter 14 Cardiac Fibrosis: The Beneficial Effects of Exercise in Cardiac Fibrosis
  16. Altmetric Badge
    Chapter 15 Physical Exercise Is a Potential “Medicine” for Atherosclerosis
  17. Altmetric Badge
    Chapter 16 Experimental Evidences Supporting Training-Induced Benefits in Spontaneously Hypertensive Rats
  18. Altmetric Badge
    Chapter 17 Exercise Training in Pulmonary Hypertension and Right Heart Failure: Insights from Pre-clinical Studies
Attention for Chapter 8: The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling
Chapter number 8
Book title
Exercise for Cardiovascular Disease Prevention and Treatment
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-981-10-4307-9_8
Pubmed ID
Book ISBNs
978-9-81-104306-2, 978-9-81-104307-9
Authors

Ivan Varga, Jan Kyselovič, Paulina Galfiova, Lubos Danisovic, Varga, Ivan, Kyselovič, Jan, Galfiova, Paulina, Danisovic, Lubos

Abstract

The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of "connecting cell" that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ's well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 14%
Student > Bachelor 6 12%
Student > Postgraduate 5 10%
Student > Master 5 10%
Professor > Associate Professor 4 8%
Other 8 16%
Unknown 14 29%
Readers by discipline Count As %
Medicine and Dentistry 12 24%
Biochemistry, Genetics and Molecular Biology 6 12%
Agricultural and Biological Sciences 4 8%
Immunology and Microbiology 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 6 12%
Unknown 16 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 May 2018.
All research outputs
#15,481,147
of 23,005,189 outputs
Outputs from Advances in experimental medicine and biology
#2,514
of 4,961 outputs
Outputs of similar age
#257,332
of 421,224 outputs
Outputs of similar age from Advances in experimental medicine and biology
#235
of 490 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,961 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,224 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 490 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.