↓ Skip to main content

Oocytes

Overview of attention for book
Oocytes
Springer International Publishing

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Exogenous Molecule and Organelle Delivery in Oogenesis
  3. Altmetric Badge
    Chapter 2 Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment
  4. Altmetric Badge
    Chapter 3 Transovarial Transmission of Symbionts in Insects
  5. Altmetric Badge
    Chapter 4 Acquisition of Oocyte Polarity
  6. Altmetric Badge
    Chapter 5 The Pole (Germ) Plasm in Insect Oocytes
  7. Altmetric Badge
    Chapter 6 Multiple Functions of the DEAD-Box Helicase Vasa in Drosophila Oogenesis
  8. Altmetric Badge
    Chapter 7 The Role of Microtubule Motors in mRNA Localization and Patterning Within the Drosophila Oocyte
  9. Altmetric Badge
    Chapter 8 Phosphoinositides and Cell Polarity in the Drosophila Egg Chamber
  10. Altmetric Badge
    Chapter 9 RNA Localization in the Vertebrate Oocyte: Establishment of Oocyte Polarity and Localized mRNA Assemblages
  11. Altmetric Badge
    Chapter 10 DNA Methyltransferases in Mammalian Oocytes
  12. Altmetric Badge
    Chapter 11 Accumulation of Chromatin Remodelling Enzyme and Histone Transcripts in Bovine Oocytes
  13. Altmetric Badge
    Chapter 12 Translational Regulation in the Mammalian Oocyte
  14. Altmetric Badge
    Chapter 13 Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes
  15. Altmetric Badge
    Chapter 14 Switches in Dicer Activity During Oogenesis and Early Development
  16. Altmetric Badge
    Chapter 15 The Regulation and Function of Cohesin and Condensin in Mammalian Oocytes and Spermatocytes
  17. Altmetric Badge
    Chapter 16 Supply and Demand of Energy in the Oocyte and the Role of Mitochondria
  18. Altmetric Badge
    Chapter 17 Functions of Vitellogenin in Eggs
  19. Altmetric Badge
    Chapter 18 Lipids in Insect Oocytes: From the Storage Pathways to Their Multiple Functions
  20. Altmetric Badge
    Chapter 19 Parthenogenesis in Insects: The Centriole Renaissance
  21. Altmetric Badge
    Chapter 20 The Origin and Evolution of Maternal Genes
  22. Altmetric Badge
    Chapter 21 Noninheritable Maternal Factors Useful for Genetic Manipulation in Mammals
Attention for Chapter 19: Parthenogenesis in Insects: The Centriole Renaissance
Altmetric Badge

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Parthenogenesis in Insects: The Centriole Renaissance
Chapter number 19
Book title
Oocytes
Published in
Results and problems in cell differentiation, January 2017
DOI 10.1007/978-3-319-60855-6_19
Pubmed ID
Book ISBNs
978-3-31-960854-9, 978-3-31-960855-6
Authors

Maria Giovanna Riparbelli, Marco Gottardo, Giuliano Callaini

Abstract

Building a new organism usually requires the contribution of two differently shaped haploid cells, the male and female gametes, each providing its genetic material to restore diploidy of the new born zygote. The successful execution of this process requires defined sequential steps that must be completed in space and time. Otherwise, development fails. Relevant among the earlier steps are pronuclear migration and formation of the first mitotic spindle that promote the mixing of parental chromosomes and the formation of the zygotic nucleus. A complex microtubule network ensures the proper execution of these processes. Instrumental to microtubule organization and bipolar spindle assembly is a distinct non-membranous organelle, the centrosome. Centrosome inheritance during fertilization is biparental, since both gametes provide essential components to build a functional centrosome. This model does not explain, however, centrosome formation during parthenogenetic development, a special mode of sexual reproduction in which the unfertilized egg develops without the contribution of the male gamete. Moreover, whereas fertilization is a relevant example in which the cells actively check the presence of only one centrosome, to avoid multipolar spindle formation, the development of parthenogenetic eggs is ensured, at least in insects, by the de novo assembly of multiple centrosomes.Here, we will focus our attention on the assembly of functional centrosomes following fertilization and during parthenogenetic development in insects. Parthenogenetic development in which unfertilized eggs are naturally depleted of centrosomes would provide a useful experimental system to investigate centriole assembly and duplication together with centrosome formation and maturation.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 33%
Researcher 2 17%
Student > Bachelor 1 8%
Lecturer > Senior Lecturer 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 2 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 42%
Agricultural and Biological Sciences 4 33%
Medicine and Dentistry 1 8%
Unknown 2 17%