↓ Skip to main content

Oocytes

Overview of attention for book
Cover of 'Oocytes'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Exogenous Molecule and Organelle Delivery in Oogenesis
  3. Altmetric Badge
    Chapter 2 Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment
  4. Altmetric Badge
    Chapter 3 Transovarial Transmission of Symbionts in Insects
  5. Altmetric Badge
    Chapter 4 Acquisition of Oocyte Polarity
  6. Altmetric Badge
    Chapter 5 The Pole (Germ) Plasm in Insect Oocytes
  7. Altmetric Badge
    Chapter 6 Multiple Functions of the DEAD-Box Helicase Vasa in Drosophila Oogenesis
  8. Altmetric Badge
    Chapter 7 The Role of Microtubule Motors in mRNA Localization and Patterning Within the Drosophila Oocyte
  9. Altmetric Badge
    Chapter 8 Phosphoinositides and Cell Polarity in the Drosophila Egg Chamber
  10. Altmetric Badge
    Chapter 9 RNA Localization in the Vertebrate Oocyte: Establishment of Oocyte Polarity and Localized mRNA Assemblages
  11. Altmetric Badge
    Chapter 10 DNA Methyltransferases in Mammalian Oocytes
  12. Altmetric Badge
    Chapter 11 Accumulation of Chromatin Remodelling Enzyme and Histone Transcripts in Bovine Oocytes
  13. Altmetric Badge
    Chapter 12 Translational Regulation in the Mammalian Oocyte
  14. Altmetric Badge
    Chapter 13 Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes
  15. Altmetric Badge
    Chapter 14 Switches in Dicer Activity During Oogenesis and Early Development
  16. Altmetric Badge
    Chapter 15 The Regulation and Function of Cohesin and Condensin in Mammalian Oocytes and Spermatocytes
  17. Altmetric Badge
    Chapter 16 Supply and Demand of Energy in the Oocyte and the Role of Mitochondria
  18. Altmetric Badge
    Chapter 17 Functions of Vitellogenin in Eggs
  19. Altmetric Badge
    Chapter 18 Lipids in Insect Oocytes: From the Storage Pathways to Their Multiple Functions
  20. Altmetric Badge
    Chapter 19 Parthenogenesis in Insects: The Centriole Renaissance
  21. Altmetric Badge
    Chapter 20 The Origin and Evolution of Maternal Genes
  22. Altmetric Badge
    Chapter 21 Noninheritable Maternal Factors Useful for Genetic Manipulation in Mammals
Attention for Chapter 11: Accumulation of Chromatin Remodelling Enzyme and Histone Transcripts in Bovine Oocytes
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Accumulation of Chromatin Remodelling Enzyme and Histone Transcripts in Bovine Oocytes
Chapter number 11
Book title
Oocytes
Published in
Results and problems in cell differentiation, January 2017
DOI 10.1007/978-3-319-60855-6_11
Pubmed ID
Book ISBNs
978-3-31-960854-9, 978-3-31-960855-6
Authors

V. Lodde, A. M. Luciano, F. Franciosi, R. Labrecque, M. A. Sirard

Abstract

During growth, the oocyte accumulates mRNAs that will be required in the later stages of oogenesis and early embryogenesis until the activation of the embryonic genome. Each of these developmental stages is controlled by multiple regulatory mechanisms that ensure proper protein production. Thus mRNAs are stabilized, stored, recruited, polyadenylated, translated and/or degraded over a period of several days. As a consequence, understanding the biological significance of changes in the abundance of transcripts during oocyte growth and differentiation is rather complex. Nevertheless the availability of transcriptomic platforms applicable to scarce samples such as oocytes has generated large amounts of data that depict the transcriptome of oocytes under different conditions. Despite several technical constrains related to protein determination in oocytes that still limit the possibility to verify certain hypothesis, it is now possible to use mRNA levels to start building plausible scenarios. To start deciphering the changes in the level of specific mRNAs involved in chromatin remodelling, we have performed a meta-analysis of existing microarray datasets from germinal vesicle (GV) stage bovine oocytes during the final stages of oocyte differentiation. We then analysed the expression profiles of histone and histone-remodelling enzyme mRNAs and correlated these with the major histone modifications known to occur at the same period, based on data available in the literature. We believe that this approach could reveal the function of specific enzymes in the oocyte. In turn, this information will be useful in future studies, which final ambitious goal is to decipher the 'oocyte-specific histone code'.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 19%
Researcher 3 14%
Student > Ph. D. Student 3 14%
Professor > Associate Professor 2 10%
Other 2 10%
Other 4 19%
Unknown 3 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 43%
Biochemistry, Genetics and Molecular Biology 5 24%
Veterinary Science and Veterinary Medicine 3 14%
Neuroscience 1 5%
Unknown 3 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2017.
All research outputs
#13,901,936
of 23,577,654 outputs
Outputs from Results and problems in cell differentiation
#64
of 215 outputs
Outputs of similar age
#215,703
of 423,887 outputs
Outputs of similar age from Results and problems in cell differentiation
#10
of 39 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 215 research outputs from this source. They receive a mean Attention Score of 2.2. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,887 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.