↓ Skip to main content

Kidney Development and Disease

Overview of attention for book
Attention for Chapter 3: Zebrafish as a Model of Kidney Disease
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Zebrafish as a Model of Kidney Disease
Chapter number 3
Book title
Kidney Development and Disease
Published in
Results and problems in cell differentiation, January 2017
DOI 10.1007/978-3-319-51436-9_3
Pubmed ID
Book ISBNs
978-3-31-951435-2, 978-3-31-951436-9
Authors

Elvin E. Morales, Rebecca A. Wingert, Morales, Elvin E., Wingert, Rebecca A.

Abstract

Animal models have been an invaluable means to advance biomedical research as they provide experimental avenues for cellular and molecular investigations of disease pathology. The zebrafish (Danio rerio) is a good alternative to mammalian models that can be used to apply powerful genetic experimental methods normally used in invertebrates to answer questions about vertebrate development and disease. In the case of the kidney, the zebrafish has proven itself to be an applicable and versatile experimental system, mainly due to the simplicity of its pronephros, which contains two nephrons that possess conserved structural and physiological aspects with mammalian nephrons. Numerous genes that were not previously related to kidney conditions have now been linked to renal diseases by applying genetic screening with the zebrafish. In fact, a large collection of mutations that affect nephron formation and function were generated through phenotype-based forward screens. Complementary reverse genetic approaches have also been insightful, with methods spanning the use of antisense morpholino oligonucleotides to genome editing approaches such as the CRISPR/Cas9 system, to selectively knock down or knock out genes of interest to see if they produce kidney phenotypes. Acute kidney injury (AKI) has also been easily modeled in the zebrafish by injecting nephrotoxins, directly inducing damage through surgical intervention, or by generating transgenic lines that express compounds in a tissue-specific manner that when exposed to certain drugs promote an apoptotic response within cells. In this chapter, we provide an overview of these various approaches as well as discuss many of the contributions that have been achieved through the use of zebrafish to model kidney disease.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 27%
Student > Master 9 16%
Student > Bachelor 5 9%
Student > Doctoral Student 4 7%
Other 3 5%
Other 6 11%
Unknown 13 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 25%
Agricultural and Biological Sciences 6 11%
Medicine and Dentistry 5 9%
Neuroscience 5 9%
Pharmacology, Toxicology and Pharmaceutical Science 4 7%
Other 6 11%
Unknown 15 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2017.
All research outputs
#18,565,641
of 22,994,508 outputs
Outputs from Results and problems in cell differentiation
#134
of 217 outputs
Outputs of similar age
#311,342
of 421,174 outputs
Outputs of similar age from Results and problems in cell differentiation
#25
of 39 outputs
Altmetric has tracked 22,994,508 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 217 research outputs from this source. They receive a mean Attention Score of 2.2. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,174 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.