↓ Skip to main content

Neuroproteomics

Overview of attention for book
Cover of 'Neuroproteomics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Neuroproteomics Studies: Challenges and Updates
  3. Altmetric Badge
    Chapter 2 Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery
  4. Altmetric Badge
    Chapter 3 Biofluid Proteomics and Biomarkers in Traumatic Brain Injury
  5. Altmetric Badge
    Chapter 4 Degradomics in Neurotrauma: Profiling Traumatic Brain Injury
  6. Altmetric Badge
    Chapter 5 Evolving Relevance of Neuroproteomics in Alzheimer’s Disease
  7. Altmetric Badge
    Chapter 6 Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model
  8. Altmetric Badge
    Chapter 7 Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites
  9. Altmetric Badge
    Chapter 8 Quantitative Phosphoproteomic Analysis of Brain Tissues
  10. Altmetric Badge
    Chapter 9 Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications
  11. Altmetric Badge
    Chapter 10 A Novel 2-DE-Based Proteomic Analysis to Identify Multiple Substrates for Specific Protease in Neuronal Cells
  12. Altmetric Badge
    Chapter 11 Neuroproteomic Profiling of Cerebrospinal Fluid (CSF) by Multiplexed Affinity Arrays
  13. Altmetric Badge
    Chapter 12 Isolation and Proteomic Analysis of Microvesicles and Exosomes from HT22 Cells and Primary Neurons
  14. Altmetric Badge
    Chapter 13 Combined MALDI Mass Spectrometry Imaging and Parafilm-Assisted Microdissection-Based LC-MS/MS Workflows in the Study of the Brain
  15. Altmetric Badge
    Chapter 14 De Novo and Uninterrupted SILAC Labeling of Primary Microglia
  16. Altmetric Badge
    Chapter 15 Spike-In SILAC Approach for Proteomic Analysis of Ex Vivo Microglia
  17. Altmetric Badge
    Chapter 16 A Proteomic Evaluation of Sympathetic Activity Biomarkers of the Hypothalamus-Pituitary-Adrenal Axis by Western Blotting Technique Following Experimental Traumatic Brain Injury
  18. Altmetric Badge
    Chapter 17 Efficient and Accurate Algorithm for Cleaved Fragments Prediction (CFPA) in Protein Sequences Dataset Based on Consensus and Its Variants: A Novel Degradomics Prediction Application
  19. Altmetric Badge
    Chapter 18 Effect of Second-Hand Tobacco Smoke on the Nitration of Brain Proteins: A Systems Biology and Bioinformatics Approach
  20. Altmetric Badge
    Chapter 19 An Advanced Omic Approach to Identify Co-Regulated Clusters and Transcription Regulation Network with AGCT and SHOE Methods
  21. Altmetric Badge
    Chapter 20 AutoDock and AutoDockTools for Protein-Ligand Docking: Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1(BACE1) as a Case Study
  22. Altmetric Badge
    Chapter 21 An Integration of Decision Tree and Visual Analysis to Analyze Intracranial Pressure
Attention for Chapter 7: Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites
Altmetric Badge

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites
Chapter number 7
Book title
Neuroproteomics
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6952-4_7
Pubmed ID
Book ISBNs
978-1-4939-6950-0, 978-1-4939-6952-4
Authors

Selwyn S. Jayakar, Gordon Ang, David C. Chiara, Ayman K. Hamouda

Editors

Firas H. Kobeissy, Stanley M. Stevens, Jr.

Abstract

Photoaffinity labeling techniques have been used for decades to identify drug binding sites and to study the structural biology of allosteric transitions in transmembrane proteins including pentameric ligand-gated ion channels (pLGIC). In a typical photoaffinity labeling experiment, to identify drug binding sites, UV light is used to introduce a covalent bond between a photoreactive ligand (which upon irradiation at the appropriate wavelength converts to a reactive intermediate) and amino acid residues that lie within its binding site. Then protein chemistry and peptide microsequencing techniques are used to identify these amino acids within the protein primary sequence. These amino acid residues are located within homology models of the receptor to identify the binding site of the photoreactive probe. Molecular modeling techniques are then used to model the binding of the photoreactive probe within the binding site using docking protocols. Photoaffinity labeling directly identifies amino acids that contribute to drug binding sites regardless of their location within the protein structure and distinguishes them from amino acids that are only involved in the transduction of the conformational changes mediated by the drug, but may not be part of its binding site (such as those identified by mutational studies). Major limitations of photoaffinity labeling include the availability of photoreactive ligands that faithfully mimic the properties of the parent molecule and protein preparations that supply large enough quantities suitable for photoaffinity labeling experiments. When the ligand of interest is not intrinsically photoreactive, chemical modifications to add a photoreactive group to the parent drug, and pharmacological evaluation of these chemical modifications become necessary. With few exceptions, expression and affinity-purification of proteins are required prior to photolabeling. Methods to isolate milligram quantities of highly enriched pLGIC suitable for photoaffinity labeling experiments have been developed. In this chapter, we discuss practical aspects of experimental strategies to identify allosteric modulator binding sites in pLGIC using photoaffinity labeling.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 38%
Student > Ph. D. Student 1 13%
Student > Bachelor 1 13%
Professor > Associate Professor 1 13%
Unknown 2 25%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 1 13%
Biochemistry, Genetics and Molecular Biology 1 13%
Nursing and Health Professions 1 13%
Agricultural and Biological Sciences 1 13%
Medicine and Dentistry 1 13%
Other 1 13%
Unknown 2 25%