↓ Skip to main content

Neuroproteomics

Overview of attention for book
Cover of 'Neuroproteomics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Neuroproteomics Studies: Challenges and Updates
  3. Altmetric Badge
    Chapter 2 Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery
  4. Altmetric Badge
    Chapter 3 Biofluid Proteomics and Biomarkers in Traumatic Brain Injury
  5. Altmetric Badge
    Chapter 4 Degradomics in Neurotrauma: Profiling Traumatic Brain Injury
  6. Altmetric Badge
    Chapter 5 Evolving Relevance of Neuroproteomics in Alzheimer’s Disease
  7. Altmetric Badge
    Chapter 6 Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model
  8. Altmetric Badge
    Chapter 7 Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites
  9. Altmetric Badge
    Chapter 8 Quantitative Phosphoproteomic Analysis of Brain Tissues
  10. Altmetric Badge
    Chapter 9 Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications
  11. Altmetric Badge
    Chapter 10 A Novel 2-DE-Based Proteomic Analysis to Identify Multiple Substrates for Specific Protease in Neuronal Cells
  12. Altmetric Badge
    Chapter 11 Neuroproteomic Profiling of Cerebrospinal Fluid (CSF) by Multiplexed Affinity Arrays
  13. Altmetric Badge
    Chapter 12 Isolation and Proteomic Analysis of Microvesicles and Exosomes from HT22 Cells and Primary Neurons
  14. Altmetric Badge
    Chapter 13 Combined MALDI Mass Spectrometry Imaging and Parafilm-Assisted Microdissection-Based LC-MS/MS Workflows in the Study of the Brain
  15. Altmetric Badge
    Chapter 14 De Novo and Uninterrupted SILAC Labeling of Primary Microglia
  16. Altmetric Badge
    Chapter 15 Spike-In SILAC Approach for Proteomic Analysis of Ex Vivo Microglia
  17. Altmetric Badge
    Chapter 16 A Proteomic Evaluation of Sympathetic Activity Biomarkers of the Hypothalamus-Pituitary-Adrenal Axis by Western Blotting Technique Following Experimental Traumatic Brain Injury
  18. Altmetric Badge
    Chapter 17 Efficient and Accurate Algorithm for Cleaved Fragments Prediction (CFPA) in Protein Sequences Dataset Based on Consensus and Its Variants: A Novel Degradomics Prediction Application
  19. Altmetric Badge
    Chapter 18 Effect of Second-Hand Tobacco Smoke on the Nitration of Brain Proteins: A Systems Biology and Bioinformatics Approach
  20. Altmetric Badge
    Chapter 19 An Advanced Omic Approach to Identify Co-Regulated Clusters and Transcription Regulation Network with AGCT and SHOE Methods
  21. Altmetric Badge
    Chapter 20 AutoDock and AutoDockTools for Protein-Ligand Docking: Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1(BACE1) as a Case Study
  22. Altmetric Badge
    Chapter 21 An Integration of Decision Tree and Visual Analysis to Analyze Intracranial Pressure
Attention for Chapter 3: Biofluid Proteomics and Biomarkers in Traumatic Brain Injury
Altmetric Badge

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Biofluid Proteomics and Biomarkers in Traumatic Brain Injury
Chapter number 3
Book title
Neuroproteomics
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6952-4_3
Pubmed ID
Book ISBNs
978-1-4939-6950-0, 978-1-4939-6952-4
Authors

Safa Azar, Anwarul Hasan, Richard Younes, Farah Najdi, Lama Baki, Hussein Ghazale, Firas H. Kobeissy, Kazem Zibara, Stefania Mondello M.D., M.P.H., Ph.D., Stefania Mondello, Azar, Safa, Hasan, Anwarul, Younes, Richard, Najdi, Farah, Baki, Lama, Ghazale, Hussein, Kobeissy, Firas H., Zibara, Kazem, Mondello, Stefania

Editors

Firas H. Kobeissy, Stanley M. Stevens, Jr.

Abstract

Traumatic brain injury (TBI) is an injury to the brain caused by an external mechanical force, affecting millions of people worldwide. The disease course and prognosis are often unpredictable, and it can be challenging to determine an early diagnosis in case of mild injury as well as to accurately phenotype the injury. There is currently no cure for TBI-drugs having failed repeatedly in clinical trials-but an intense effort has been put to identify effective neuroprotective treatment. The detection of novel biomarkers, to understand more of the disease mechanism, facilitates early diagnosis, predicts disease progression, and develops molecularly targeted therapies that would be of high clinical interest. Over the last decade, there has been an increasing effort and initiative toward finding TBI-specific biomarker candidates. One promising strategy has been to use state-of-the-art neuroproteomics approaches to assess clinical biofluids and compare the cerebrospinal fluid (CSF) and blood proteome between TBI and control patients or between different subgroups of TBI. In this chapter, we summarize and discuss the status of biofluid proteomics in TBI, with a particular focus on the latest findings.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 17%
Researcher 4 11%
Professor > Associate Professor 3 8%
Student > Doctoral Student 3 8%
Professor 2 6%
Other 8 22%
Unknown 10 28%
Readers by discipline Count As %
Medicine and Dentistry 7 19%
Biochemistry, Genetics and Molecular Biology 6 17%
Nursing and Health Professions 4 11%
Neuroscience 4 11%
Engineering 1 3%
Other 0 0%
Unknown 14 39%