↓ Skip to main content

Neuroproteomics

Overview of attention for book
Cover of 'Neuroproteomics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Neuroproteomics Studies: Challenges and Updates
  3. Altmetric Badge
    Chapter 2 Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery
  4. Altmetric Badge
    Chapter 3 Biofluid Proteomics and Biomarkers in Traumatic Brain Injury
  5. Altmetric Badge
    Chapter 4 Degradomics in Neurotrauma: Profiling Traumatic Brain Injury
  6. Altmetric Badge
    Chapter 5 Evolving Relevance of Neuroproteomics in Alzheimer’s Disease
  7. Altmetric Badge
    Chapter 6 Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model
  8. Altmetric Badge
    Chapter 7 Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites
  9. Altmetric Badge
    Chapter 8 Quantitative Phosphoproteomic Analysis of Brain Tissues
  10. Altmetric Badge
    Chapter 9 Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications
  11. Altmetric Badge
    Chapter 10 A Novel 2-DE-Based Proteomic Analysis to Identify Multiple Substrates for Specific Protease in Neuronal Cells
  12. Altmetric Badge
    Chapter 11 Neuroproteomic Profiling of Cerebrospinal Fluid (CSF) by Multiplexed Affinity Arrays
  13. Altmetric Badge
    Chapter 12 Isolation and Proteomic Analysis of Microvesicles and Exosomes from HT22 Cells and Primary Neurons
  14. Altmetric Badge
    Chapter 13 Combined MALDI Mass Spectrometry Imaging and Parafilm-Assisted Microdissection-Based LC-MS/MS Workflows in the Study of the Brain
  15. Altmetric Badge
    Chapter 14 De Novo and Uninterrupted SILAC Labeling of Primary Microglia
  16. Altmetric Badge
    Chapter 15 Spike-In SILAC Approach for Proteomic Analysis of Ex Vivo Microglia
  17. Altmetric Badge
    Chapter 16 A Proteomic Evaluation of Sympathetic Activity Biomarkers of the Hypothalamus-Pituitary-Adrenal Axis by Western Blotting Technique Following Experimental Traumatic Brain Injury
  18. Altmetric Badge
    Chapter 17 Efficient and Accurate Algorithm for Cleaved Fragments Prediction (CFPA) in Protein Sequences Dataset Based on Consensus and Its Variants: A Novel Degradomics Prediction Application
  19. Altmetric Badge
    Chapter 18 Effect of Second-Hand Tobacco Smoke on the Nitration of Brain Proteins: A Systems Biology and Bioinformatics Approach
  20. Altmetric Badge
    Chapter 19 An Advanced Omic Approach to Identify Co-Regulated Clusters and Transcription Regulation Network with AGCT and SHOE Methods
  21. Altmetric Badge
    Chapter 20 AutoDock and AutoDockTools for Protein-Ligand Docking: Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1(BACE1) as a Case Study
  22. Altmetric Badge
    Chapter 21 An Integration of Decision Tree and Visual Analysis to Analyze Intracranial Pressure
Attention for Chapter 5: Evolving Relevance of Neuroproteomics in Alzheimer’s Disease
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Evolving Relevance of Neuroproteomics in Alzheimer’s Disease
Chapter number 5
Book title
Neuroproteomics
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6952-4_5
Pubmed ID
Book ISBNs
978-1-4939-6950-0, 978-1-4939-6952-4, 978-1-4939-6950-0, 978-1-4939-6952-4
Authors

Simone Lista, Henrik Zetterberg, Sid E. O’Bryant, Kaj Blennow, Harald Hampel, Simone Lista Ph.D., Lista, S, Zetterberg, H, O'Bryant, SE, Blennow, K, Hampel, H

Editors

Firas H. Kobeissy, Stanley M. Stevens, Jr.

Abstract

Substantial progress in the understanding of the biology of Alzheimer's disease (AD) has been achieved over the past decades. The early detection and diagnosis of AD and other age-related neurodegenerative diseases, however, remain a challenging scientific frontier. Therefore, the comprehensive discovery (relating to all individual, converging or diverging biochemical disease mechanisms), development, validation, and qualification of standardized biological markers with diagnostic and prognostic functions with a precise performance profile regarding specificity, sensitivity, and positive and negative predictive value are warranted.Methodological innovations in the area of exploratory high-throughput technologies, such as sequencing, microarrays, and mass spectrometry-based analyses of proteins/peptides, have led to the generation of large global molecular datasets from a multiplicity of biological systems, such as biological fluids, cells, tissues, and organs. Such methodological progress has shifted the attention to the execution of hypothesis-independent comprehensive exploratory analyses (opposed to the classical hypothesis-driven candidate approach), with the aim of fully understanding the biological systems in physiology and disease as a whole. The systems biology paradigm integrates experimental biology with accurate and rigorous computational modelling to describe and foresee the dynamic features of biological systems. The use of dynamically evolving technological platforms, including mass spectrometry, in the area of proteomics has enabled to rush the process of biomarker discovery and validation for refining significantly the diagnosis of AD. Currently, proteomics-which is part of the systems biology paradigm-is designated as one of the dominant matured sciences needed for the effective exploratory discovery of prospective biomarker candidates expected to play an effective role in aiding the early detection, diagnosis, prognosis, and therapy development in AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Other 6 20%
Student > Ph. D. Student 5 17%
Researcher 4 13%
Professor 3 10%
Student > Master 3 10%
Other 3 10%
Unknown 6 20%
Readers by discipline Count As %
Neuroscience 7 23%
Biochemistry, Genetics and Molecular Biology 3 10%
Medicine and Dentistry 3 10%
Psychology 3 10%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Other 4 13%
Unknown 8 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 October 2018.
All research outputs
#14,345,967
of 22,971,207 outputs
Outputs from Methods in molecular biology
#4,214
of 13,146 outputs
Outputs of similar age
#230,252
of 421,094 outputs
Outputs of similar age from Methods in molecular biology
#367
of 1,074 outputs
Altmetric has tracked 22,971,207 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,146 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,094 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.