↓ Skip to main content

ATM Kinase

Overview of attention for book
Cover of 'ATM Kinase'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Assaying Radiosensitivity of Ataxia-Telangiectasia
  3. Altmetric Badge
    Chapter 2 Assaying for Radioresistant DNA Synthesis, the Hallmark Feature of the Intra-S-Phase Checkpoint Using a DNA Fiber Technique
  4. Altmetric Badge
    Chapter 3 ATM Gene Mutation Detection Techniques and Functional Analysis
  5. Altmetric Badge
    Chapter 4 An HTRF® Assay for the Protein Kinase ATM
  6. Altmetric Badge
    Chapter 5 ATM Kinase Inhibitors: HTS Cellular Imaging Assay Using Cellomics™ ArrayScan VTI Platform
  7. Altmetric Badge
    Chapter 6 Image-Based High Content Screening: Automating the Quantification Process for DNA Damage-Induced Foci
  8. Altmetric Badge
    Chapter 7 Analyzing ATM Function by Electroporation of Endonucleases and Immunofluorescence Microscopy
  9. Altmetric Badge
    Chapter 8 Quantitative and Dynamic Imaging of ATM Kinase Activity by Bioluminescence Imaging
  10. Altmetric Badge
    Chapter 9 Zn(II)–Phos-Tag SDS-PAGE for Separation and Detection of a DNA Damage-Related Signaling Large Phosphoprotein
  11. Altmetric Badge
    Chapter 10 Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry
  12. Altmetric Badge
    Chapter 11 Studies of ATM Kinase Activity Using Engineered ATM Sensitive to ATP Analogues (ATM-AS)
  13. Altmetric Badge
    Chapter 12 Functional Characterization of ATM Kinase Using Acetylation-Specific Antibodies
  14. Altmetric Badge
    Chapter 13 Identification of ATM-Interacting Proteins by Co-immunoprecipitation and Glutathione-S-Transferase (GST) Pull-Down Assays
  15. Altmetric Badge
    Chapter 14 ATM Activation and H2AX Phosphorylation Induced by Genotoxic Agents Assessed by Flow- and Laser Scanning Cytometry
  16. Altmetric Badge
    Chapter 15 Peptide Immunoaffinity Enrichment with Targeted Mass Spectrometry: Application to Quantification of ATM Kinase Phospho-Signaling
  17. Altmetric Badge
    Chapter 16 Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation
  18. Altmetric Badge
    Chapter 17 Statistical Analysis of ATM-Dependent Signaling in Quantitative Mass Spectrometry Phosphoproteomics
  19. Altmetric Badge
    Chapter 18 ChIP Technique to Study Protein Dynamics at Defined DNA Double Strand Breaks
  20. Altmetric Badge
    Chapter 19 Studies of the DNA Damage Response by Using the Lac Operator/Repressor (LacO/LacR) Tethering System
  21. Altmetric Badge
    Chapter 20 Imaging of Fluorescently Tagged ATM Kinase at the Sites of DNA Double Strand Breaks
  22. Altmetric Badge
    Chapter 21 Live Cell Imaging to Study Real-Time ATM-Mediated Recruitment of DNA Repair Complexes to Sites of Ionizing Radiation-Induced DNA Damage
  23. Altmetric Badge
    Chapter 22 Analyzing Heterochromatic DNA Double Strand Break (DSB) Repair in Response to Ionizing Radiation
  24. Altmetric Badge
    Chapter 23 Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair
  25. Altmetric Badge
    Chapter 24 Monitoring DNA Repair Consequences of ATM Signaling Using Simultaneous Fluorescent Readouts
  26. Altmetric Badge
    Chapter 25 Noncanonical ATM Activation and Signaling in Response to Transcription-Blocking DNA Damage
  27. Altmetric Badge
    Chapter 26 Study of ATM Phosphorylation by Cdk5 in Neuronal Cells
  28. Altmetric Badge
    Chapter 27 DNA Damage Response in Human Stem Cells and Neural Descendants
  29. Altmetric Badge
    Chapter 28 A Patient-Specific Stem Cell Model to Investigate the Neurological Phenotype Observed in Ataxia-Telangiectasia
  30. Altmetric Badge
    Chapter 29 Lentiviral Reprogramming of A-T Patient Fibroblasts to Induced Pluripotent Stem Cells
  31. Altmetric Badge
    Chapter 30 Monitoring the ATM-Mediated DNA Damage Response in the Cerebellum Using Organotypic Cultures
Attention for Chapter 23: Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair
Chapter number 23
Book title
ATM Kinase
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6955-5_23
Pubmed ID
Book ISBNs
978-1-4939-6953-1, 978-1-4939-6955-5, 978-1-4939-6953-1, 978-1-4939-6955-5
Authors

Elisabeth Mian, Lisa Wiesmüller

Editors

Sergei V. Kozlov

Abstract

Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells treated with and without pharmacological kinase inhibitors revealed ATM-dependent chromatin remodeling at the MLL break site giving access to DNA repair proteins but also nucleases triggering MLL rearrangements. This chapter summarizes these methods for functional characterization of ATM in patient LCLs and human cell lines.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 55%
Student > Master 2 18%
Student > Doctoral Student 1 9%
Unspecified 1 9%
Unknown 1 9%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 36%
Medicine and Dentistry 3 27%
Chemistry 1 9%
Unspecified 1 9%
Unknown 2 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 May 2017.
All research outputs
#14,934,072
of 22,971,207 outputs
Outputs from Methods in molecular biology
#4,720
of 13,142 outputs
Outputs of similar age
#243,290
of 421,094 outputs
Outputs of similar age from Methods in molecular biology
#416
of 1,074 outputs
Altmetric has tracked 22,971,207 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,142 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,094 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.