↓ Skip to main content

Macromolecular Protein Complexes

Overview of attention for book
Cover of 'Macromolecular Protein Complexes'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Structure and Function of the Stressosome Signalling Hub
  3. Altmetric Badge
    Chapter 2 The Canonical Inflammasome: A Macromolecular Complex Driving Inflammation
  4. Altmetric Badge
    Chapter 3 The Ferritin Superfamily
  5. Altmetric Badge
    Chapter 4 Antibody Recognition of Immunodominant Vaccinia Virus Envelope Proteins
  6. Altmetric Badge
    Chapter 5 The Peroxiredoxin Family: An Unfolding Story
  7. Altmetric Badge
    Chapter 6 α2-Macroglobulins: Structure and Function
  8. Altmetric Badge
    Chapter 7 The Structure and Function of the PRMT5:MEP50 Complex
  9. Altmetric Badge
    Chapter 8 Symmetry-Directed Design of Protein Cages and Protein Lattices and Their Applications
  10. Altmetric Badge
    Chapter 9 Structure and Function of RNA Polymerases and the Transcription Machineries
  11. Altmetric Badge
    Chapter 10 Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution
  12. Altmetric Badge
    Chapter 11 “Pyruvate Carboxylase, Structure and Function”
  13. Altmetric Badge
    Chapter 12 Cullin-RING E3 Ubiquitin Ligases: Bridges to Destruction
  14. Altmetric Badge
    Chapter 13 The Ccr4-Not Complex: Architecture and Structural Insights
  15. Altmetric Badge
    Chapter 14 Higher-Order Structure in Bacterial VapBC Toxin-Antitoxin Complexes
  16. Altmetric Badge
    Chapter 15 D-Glyceraldehyde-3-Phosphate Dehydrogenase Structure and Function
  17. Altmetric Badge
    Chapter 16 Protein Complexes in the Nucleus: The Control of Chromosome Segregation
  18. Altmetric Badge
    Chapter 17 GroEL and the GroEL-GroES Complex
  19. Altmetric Badge
    Chapter 18 The Aminoacyl-tRNA Synthetase Complex
  20. Altmetric Badge
    Chapter 19 The Pyruvate Dehydrogenase Complex and Related Assemblies in Health and Disease
  21. Altmetric Badge
    Chapter 20 Structure and Assembly of Clathrin Cages
Attention for Chapter 18: The Aminoacyl-tRNA Synthetase Complex
Altmetric Badge

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Aminoacyl-tRNA Synthetase Complex
Chapter number 18
Book title
Macromolecular Protein Complexes
Published in
Sub cellular biochemistry, March 2017
DOI 10.1007/978-3-319-46503-6_18
Pubmed ID
Book ISBNs
978-3-31-946501-2, 978-3-31-946503-6
Authors

Marc Mirande

Editors

J. Robin Harris, Jon Marles-Wright

Abstract

Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 18%
Student > Ph. D. Student 10 18%
Student > Bachelor 9 16%
Researcher 3 5%
Other 3 5%
Other 5 9%
Unknown 15 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 25 45%
Medicine and Dentistry 4 7%
Neuroscience 3 5%
Agricultural and Biological Sciences 2 4%
Immunology and Microbiology 2 4%
Other 4 7%
Unknown 15 27%