↓ Skip to main content

Cholesterol Homeostasis

Overview of attention for book
Cover of 'Cholesterol Homeostasis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 An Overview of Cholesterol Homeostasis
  3. Altmetric Badge
    Chapter 2 Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins
  4. Altmetric Badge
    Chapter 3 Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review
  5. Altmetric Badge
    Chapter 4 Manipulating Cholesterol Status Within Cells
  6. Altmetric Badge
    Chapter 5 Assaying Low-Density-Lipoprotein (LDL) Uptake into Cells
  7. Altmetric Badge
    Chapter 6 The Use of L-sIDOL Transgenic Mice as a Murine Model to Study Hypercholesterolemia and Atherosclerosis
  8. Altmetric Badge
    Chapter 7 CRISPR/Cas9-Mediated Generation of Niemann–Pick C1 Knockout Cell Line
  9. Altmetric Badge
    Chapter 8 Quantitative Measurement of Cholesterol in Cell Populations Using Flow Cytometry and Fluorescent Perfringolysin O*
  10. Altmetric Badge
    Chapter 9 Transport Assays for Sterol-Binding Proteins: Stopped-Flow Fluorescence Methods for Investigating Intracellular Cholesterol Transport Mechanisms of NPC2 Protein
  11. Altmetric Badge
    Chapter 10 Synthesis and Live-Cell Imaging of Fluorescent Sterols for Analysis of Intracellular Cholesterol Transport
  12. Altmetric Badge
    Chapter 11 Measurement of Cholesterol Transfer from Lysosome to Peroxisome Using an In Vitro Reconstitution Assay
  13. Altmetric Badge
    Chapter 12 Measurement of Mitochondrial Cholesterol Import Using a Mitochondria-Targeted CYP11A1 Fusion Construct
  14. Altmetric Badge
    Chapter 13 Identifying Sterol Response Elements Within Promoters of Genes
  15. Altmetric Badge
    Chapter 14 Membrane Extraction of HMG CoA Reductase as Determined by Susceptibility of Lumenal Epitope to In Vitro Protease Digestion
  16. Altmetric Badge
    Chapter 15 Determining the Topology of Membrane-Bound Proteins Using PEGylation
  17. Altmetric Badge
    Chapter 16 Measuring Activity of Cholesterol Synthesis Enzymes Using Gas Chromatography/Mass Spectrometry
  18. Altmetric Badge
    Chapter 17 Sterol Analysis by Quantitative Mass Spectrometry
  19. Altmetric Badge
    Chapter 18 Measurement of Rates of Cholesterol and Fatty Acid Synthesis In Vivo Using Tritiated Water
  20. Altmetric Badge
    Chapter 19 Methods for Monitoring ABCA1-Dependent Sterol Release
  21. Altmetric Badge
    Chapter 20 ABC-Transporter Mediated Sterol Export from Cells Using Radiolabeled Sterols
  22. Altmetric Badge
    Chapter 21 Measurement of Macrophage-Specific In Vivo Reverse Cholesterol Transport in Mice
  23. Altmetric Badge
    Chapter 22 Erratum to: Measurement of Macrophage-Specific In Vivo Reverse Cholesterol Transport in Mice
Attention for Chapter 19: Methods for Monitoring ABCA1-Dependent Sterol Release
Altmetric Badge

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Methods for Monitoring ABCA1-Dependent Sterol Release
Chapter number 19
Book title
Cholesterol Homeostasis
Published in
Methods in molecular biology, February 2017
DOI 10.1007/978-1-4939-6875-6_19
Pubmed ID
Book ISBNs
978-1-4939-6873-2, 978-1-4939-6875-6
Authors

Yoshio Yamauchi, Shinji Yokoyama, Ta-Yuan Chang

Editors

Ingrid C. Gelissen, Andrew J. Brown

Abstract

Releasing sterols to the extracellular milieu is an important part of sterol homeostasis in cells and in the body. ATP-binding cassette transporter A1 (ABCA1) plays an essential role in cellular phospholipid and sterol release to lipid-free or lipid-poor apolipoprotein A-I (apoA-I), the major apolipoprotein in high-density lipoprotein (HDL), and constitutes the first step in the formation of nascent HDL. Loss-of-function mutations in the ABCA1 gene lead to a rare disease known as Tangier disease that causes severe deficiency in plasma HDL level. Mammalian cells receive exogenous cholesterol mainly from low-density lipoprotein. In addition, they synthesize cholesterol endogenously, as well as multiple precursor sterols that are sterol intermediates en route to be converted to cholesterol. HDL contains phospholipids, cholesterol, and precursor sterols, and ABCA1 has an ability to release phospholipids and various sterol molecules. Recent studies using model cell lines showed that ABCA1 prefers to use sterols newly synthesized endogenously as its preferred substrate, rather than cholesterol derived from LDL or cholesterol being recycled within the cells. Here, we describe several methods at the cell culture level to monitor ABCA1-dependent release of sterol molecules to apoA-I present at the cell exterior. Sterol release can be assessed by using a simple colorimetric enzymatic assay, and/or by monitoring the radioactivities of radiolabeled cholesterol incorporated into the cells, and/or of sterols biosynthesized from radioactive acetate, and/or by using gas chromatography-mass spectrometry analysis of various sterols present in medium and in cells. We also discuss the pros and cons of these methods. Together, these methods allow researchers to detect the release not only of cholesterol but also of other sterols present in minor quantities.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 25%
Researcher 2 17%
Professor 1 8%
Student > Bachelor 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 3 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 25%
Biochemistry, Genetics and Molecular Biology 2 17%
Neuroscience 1 8%
Medicine and Dentistry 1 8%
Unknown 5 42%