↓ Skip to main content

Cholesterol Homeostasis

Overview of attention for book
Cover of 'Cholesterol Homeostasis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 An Overview of Cholesterol Homeostasis
  3. Altmetric Badge
    Chapter 2 Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins
  4. Altmetric Badge
    Chapter 3 Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review
  5. Altmetric Badge
    Chapter 4 Manipulating Cholesterol Status Within Cells
  6. Altmetric Badge
    Chapter 5 Assaying Low-Density-Lipoprotein (LDL) Uptake into Cells
  7. Altmetric Badge
    Chapter 6 The Use of L-sIDOL Transgenic Mice as a Murine Model to Study Hypercholesterolemia and Atherosclerosis
  8. Altmetric Badge
    Chapter 7 CRISPR/Cas9-Mediated Generation of Niemann–Pick C1 Knockout Cell Line
  9. Altmetric Badge
    Chapter 8 Quantitative Measurement of Cholesterol in Cell Populations Using Flow Cytometry and Fluorescent Perfringolysin O*
  10. Altmetric Badge
    Chapter 9 Transport Assays for Sterol-Binding Proteins: Stopped-Flow Fluorescence Methods for Investigating Intracellular Cholesterol Transport Mechanisms of NPC2 Protein
  11. Altmetric Badge
    Chapter 10 Synthesis and Live-Cell Imaging of Fluorescent Sterols for Analysis of Intracellular Cholesterol Transport
  12. Altmetric Badge
    Chapter 11 Measurement of Cholesterol Transfer from Lysosome to Peroxisome Using an In Vitro Reconstitution Assay
  13. Altmetric Badge
    Chapter 12 Measurement of Mitochondrial Cholesterol Import Using a Mitochondria-Targeted CYP11A1 Fusion Construct
  14. Altmetric Badge
    Chapter 13 Identifying Sterol Response Elements Within Promoters of Genes
  15. Altmetric Badge
    Chapter 14 Membrane Extraction of HMG CoA Reductase as Determined by Susceptibility of Lumenal Epitope to In Vitro Protease Digestion
  16. Altmetric Badge
    Chapter 15 Determining the Topology of Membrane-Bound Proteins Using PEGylation
  17. Altmetric Badge
    Chapter 16 Measuring Activity of Cholesterol Synthesis Enzymes Using Gas Chromatography/Mass Spectrometry
  18. Altmetric Badge
    Chapter 17 Sterol Analysis by Quantitative Mass Spectrometry
  19. Altmetric Badge
    Chapter 18 Measurement of Rates of Cholesterol and Fatty Acid Synthesis In Vivo Using Tritiated Water
  20. Altmetric Badge
    Chapter 19 Methods for Monitoring ABCA1-Dependent Sterol Release
  21. Altmetric Badge
    Chapter 20 ABC-Transporter Mediated Sterol Export from Cells Using Radiolabeled Sterols
  22. Altmetric Badge
    Chapter 21 Measurement of Macrophage-Specific In Vivo Reverse Cholesterol Transport in Mice
  23. Altmetric Badge
    Chapter 22 Erratum to: Measurement of Macrophage-Specific In Vivo Reverse Cholesterol Transport in Mice
Attention for Chapter 16: Measuring Activity of Cholesterol Synthesis Enzymes Using Gas Chromatography/Mass Spectrometry
Altmetric Badge

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Measuring Activity of Cholesterol Synthesis Enzymes Using Gas Chromatography/Mass Spectrometry
Chapter number 16
Book title
Cholesterol Homeostasis
Published in
Methods in molecular biology, February 2017
DOI 10.1007/978-1-4939-6875-6_16
Pubmed ID
Book ISBNs
978-1-4939-6873-2, 978-1-4939-6875-6
Authors

Anika V. Prabhu B.Sc., Winnie Luu Ph.D., Andrew J. Brown Ph.D., Prabhu, Anika V., Luu, Winnie, Brown, Andrew J., Anika V. Prabhu, Winnie Luu, Andrew J. Brown

Editors

Ingrid C. Gelissen, Andrew J. Brown

Abstract

The development of gas chromatography/mass spectrometry (GC/MS) technology has improved the ease and efficiency with which sterols in biological samples can be analyzed. Its advantages include that it needs only a small amount of sample, a short analysis time, and has enhanced specificity over traditional methods. Furthermore, a major benefit is its nonselective properties, which means that a complete scan of the sample will display the relative abundance of every sterol in the sample. This property has made it possible to define the abnormal, but distinctive, sterol profiles in a number of inborn errors of cholesterol synthesis. Here, we describe a semiquantitative method to determine relative activity of cholesterol synthesis enzymes. As an example, we measure the relative abundance of the substrate and product sterols of a cholesterol synthetic enzyme, 24-dehydrocholesterol reductase (DHCR24), which is defective in the hereditary developmental disease desmosterolosis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 25%
Researcher 1 25%
Lecturer 1 25%
Unknown 1 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 25%
Agricultural and Biological Sciences 1 25%
Medicine and Dentistry 1 25%
Unknown 1 25%