↓ Skip to main content

RNA Structure Determination

Overview of attention for book
Attention for Chapter 17: The Quick and the Dead: A Guide to Fast Phasing of Small Ribozyme and Riboswitch Crystal Structures
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Quick and the Dead: A Guide to Fast Phasing of Small Ribozyme and Riboswitch Crystal Structures
Chapter number 17
Book title
RNA Structure Determination
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-6433-8_17
Pubmed ID
Book ISBNs
978-1-4939-6431-4, 978-1-4939-6433-8
Authors

Jermaine L. Jenkins, Joseph E. Wedekind

Abstract

Ribozymes and riboswitches are examples of non-protein-coding (nc)RNA molecules that achieve biological activity by adopting complex three-dimensional folds. Visualization of such molecules at near-atomic resolution can enhance our understanding of how chemical groups are organized spatially, thereby providing novel insight into function. This approach has its challenges, which mainly entail sample crystallization followed by the application of empirical, structure-determination methods that often include experimental "phasing" of X-ray diffraction data. A paucity of high-quality crystals or a low symmetry space group are factors that demand rapid assessment of phasing potential during an ongoing experiment in order to assure a successful outcome. Here we describe the process of evaluating the anomalous signal-to-noise as a prelude to single wavelength or multiwavelength anomalous diffraction (SAD or MAD) phasing. Test cases include an autolytic 62-mer RNA enzyme known as the hairpin ribozyme, and a 33-mer riboswitch that binds the modified guanine metabolite preQ1. The crystals were derivatized with iridium (III) hexammine and osmium (III) pentaammine triflate, respectively. Each data set was then subjected to the XPREP and SHELX programs to assess the anomalous signal-to-noise and to locate the heavy-atom substructure. Subsequent noise filtering was conducted in SHELXE or RESOLVE. The methods described are applicable to the rapid phasing of RNA X-ray diffraction data, and contrast the efficacy of in-house X-rays with those attainable from synchrotron-radiation sources in terms of the potential to plan for and execute an experimental structure determination.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 33%
Student > Ph. D. Student 1 17%
Student > Doctoral Student 1 17%
Student > Master 1 17%
Unknown 1 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 17%
Nursing and Health Professions 1 17%
Chemistry 1 17%
Medicine and Dentistry 1 17%
Unknown 2 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 March 2018.
All research outputs
#14,835,293
of 23,016,919 outputs
Outputs from Methods in molecular biology
#4,666
of 13,165 outputs
Outputs of similar age
#217,479
of 394,704 outputs
Outputs of similar age from Methods in molecular biology
#463
of 1,471 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,165 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 394,704 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,471 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.