↓ Skip to main content

Multipotent Stem Cells of the Hair Follicle

Overview of attention for book
Cover of 'Multipotent Stem Cells of the Hair Follicle'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Multipotent Stem Cells of the Hair Follicle
  3. Altmetric Badge
    Chapter 2 Nestin-Based Reporter Transgenic Mouse Lines.
  4. Altmetric Badge
    Chapter 3 Discovery of HAP Stem Cells.
  5. Altmetric Badge
    Chapter 4 Multipotent Stem Cells of the Hair Follicle
  6. Altmetric Badge
    Chapter 5 Construction of Tissue-Engineered Nerve Conduits Seeded with Neurons Derived from Hair-Follicle Neural Crest Stem Cells.
  7. Altmetric Badge
    Chapter 6 Nestin-Expressing Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Promote Whisker Sensory-Nerve Growth in Long-Term 3D-Gelfoam® Histoculture.
  8. Altmetric Badge
    Chapter 7 Isolation and Culture of Neural Crest Stem Cells from Human Hair Follicles.
  9. Altmetric Badge
    Chapter 8 Isolation of Mouse Hair Follicle Bulge Stem Cells and Their Functional Analysis in a Reconstitution Assay.
  10. Altmetric Badge
    Chapter 9 Hair Follicle Regeneration by Transplantation of a Bioengineered Hair Follicle Germ.
  11. Altmetric Badge
    Chapter 10 Hair Induction by Cultured Mesenchymal Cells Using Sphere Formation.
  12. Altmetric Badge
    Chapter 11 Stereological Quantification of Cell-Cycle Kinetics and Mobilization of Epithelial Stem Cells during Wound Healing.
  13. Altmetric Badge
    Chapter 12 Culture of Dermal Papilla Cells from Ovine Wool Follicles: An In Vitro Model for Papilla Size Determination.
  14. Altmetric Badge
    Chapter 13 Isolation and Fluorescence-Activated Cell Sorting of Mouse Keratinocytes Expressing β-Galactosidase.
  15. Altmetric Badge
    Chapter 14 Protocols for Ectopic Hair Growth from Transplanted Whisker Follicles on the Spinal Cord of Mice.
  16. Altmetric Badge
    Chapter 15 Protocols for Gelfoam(®) Histoculture of Hair-Shaft-Producing Mouse Whisker Follicles Containing Nestin-GFP-Expressing Hair-Follicle-Associated Pluripotent (HAP) Stem Cells for Long Time Periods.
  17. Altmetric Badge
    Chapter 16 Multipotent Stem Cells of the Hair Follicle
  18. Altmetric Badge
    Chapter 17 Highly Efficient Neural Differentiation of CD34-Positive Hair-Follicle-Associated Pluripotent Stem Cells Induced by Retinoic Acid and Serum-Free Medium.
  19. Altmetric Badge
    Chapter 18 Multipotent Stem Cells of the Hair Follicle
Attention for Chapter 5: Construction of Tissue-Engineered Nerve Conduits Seeded with Neurons Derived from Hair-Follicle Neural Crest Stem Cells.
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Construction of Tissue-Engineered Nerve Conduits Seeded with Neurons Derived from Hair-Follicle Neural Crest Stem Cells.
Chapter number 5
Book title
Multipotent Stem Cells of the Hair Follicle
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3786-8_5
Pubmed ID
Book ISBNs
978-1-4939-3784-4, 978-1-4939-3786-8
Authors

Fang Liu, Haiyan Lin, Chuansen Zhang

Editors

Robert M Hoffman

Abstract

Tissue-engineered nerve conduits are widely used for the study of peripheral nerve injury repair. With regard to repairing long nerve defects, stem-cell-derived neurons are recommended as seed cells. As hair-follicle neural crest stem cells (hfNCSCs) are easily to be harvested from patients and have the potential to differentiate into neuronal cells, hfNCSCs-derived neurons are an ideal candidate choice. Acellular nerve grafts, a type of biological material scaffold, with intact collagen structure, with biocompatibility and less toxicity are obtained through removing live cells with 1 % lysolecithin, are also an ideal choice. In the present report, we describe a tissue-engineered nerve conduit seeded with rat hfNCSCs-derived neurons into the beagle acellular sciatic nerve scaffold. Our goal is to provide a novel engineered therapeutic for repairing peripheral nerve injury with long distance defects.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 18%
Researcher 2 18%
Student > Doctoral Student 2 18%
Student > Master 2 18%
Unknown 3 27%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 3 27%
Biochemistry, Genetics and Molecular Biology 1 9%
Neuroscience 1 9%
Chemistry 1 9%
Unknown 5 45%