↓ Skip to main content

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis

Overview of attention for book
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical…
Springer International Publishing

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Image Registration via Stochastic Gradient Markov Chain Monte Carlo
  3. Altmetric Badge
    Chapter 2 RevPHiSeg: A Memory-Efficient Neural Network for Uncertainty Quantification in Medical Image Segmentation
  4. Altmetric Badge
    Chapter 3 Hierarchical Brain Parcellation with Uncertainty
  5. Altmetric Badge
    Chapter 4 Quantitative Comparison of Monte-Carlo Dropout Uncertainty Measures for Multi-class Segmentation
  6. Altmetric Badge
    Chapter 5 Uncertainty Estimation in Landmark Localization Based on Gaussian Heatmaps
  7. Altmetric Badge
    Chapter 6 Weight Averaging Impact on the Uncertainty of Retinal Artery-Venous Segmentation
  8. Altmetric Badge
    Chapter 7 Improving Pathological Distribution Measurements with Bayesian Uncertainty
  9. Altmetric Badge
    Chapter 8 Improving Reliability of Clinical Models Using Prediction Calibration
  10. Altmetric Badge
    Chapter 9 Uncertainty Estimation in Medical Image Denoising with Bayesian Deep Image Prior
  11. Altmetric Badge
    Chapter 10 Uncertainty Estimation for Assessment of 3D US Scan Adequacy and DDH Metric Reliability
  12. Altmetric Badge
    Chapter 11 Clustering-Based Deep Brain MultiGraph Integrator Network for Learning Connectional Brain Templates
  13. Altmetric Badge
    Chapter 12 Detection of Discriminative Neurological Circuits Using Hierarchical Graph Convolutional Networks in fMRI Sequences
  14. Altmetric Badge
    Chapter 13 Graph Matching Based Connectomic Biomarker with Learning for Brain Disorders
  15. Altmetric Badge
    Chapter 14 Multi-scale Profiling of Brain Multigraphs by Eigen-Based Cross-diffusion and Heat Tracing for Brain State Profiling
  16. Altmetric Badge
    Chapter 15 Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation
  17. Altmetric Badge
    Chapter 16 Min-Cut Max-Flow for Network Abnormality Detection: Application to Preterm Birth
  18. Altmetric Badge
    Chapter 17 Geometric Deep Learning for Post-Menstrual Age Prediction Based on the Neonatal White Matter Cortical Surface
  19. Altmetric Badge
    Chapter 18 The GraphNet Zoo: An All-in-One Graph Based Deep Semi-supervised Framework for Medical Image Classification
  20. Altmetric Badge
    Chapter 19 Intraoperative Liver Surface Completion with Graph Convolutional VAE
  21. Altmetric Badge
    Chapter 20 HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopathological Image Classification
Attention for Chapter 15: Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation
Altmetric Badge

Mentioned by

twitter
10 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation
Chapter number 15
Book title
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis
Published by
Springer, Cham, October 2020
DOI 10.1007/978-3-030-60365-6_15
Book ISBNs
978-3-03-060364-9, 978-3-03-060365-6
Authors

Karthik Gopinath, Christian Desrosiers, Herve Lombaert

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Student > Master 4 15%
Professor 2 7%
Researcher 2 7%
Student > Doctoral Student 1 4%
Other 1 4%
Unknown 12 44%
Readers by discipline Count As %
Computer Science 7 26%
Medicine and Dentistry 2 7%
Engineering 2 7%
Neuroscience 1 4%
Agricultural and Biological Sciences 1 4%
Other 0 0%
Unknown 14 52%