↓ Skip to main content

Hypoxia

Overview of attention for book
Attention for Chapter 30: Hypoxia
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Hypoxia
Chapter number 30
Book title
Hypoxia
Published in
Advances in experimental medicine and biology, June 2016
DOI 10.1007/978-1-4899-7678-9_30
Pubmed ID
Book ISBNs
978-1-4899-7676-5, 978-1-4899-7678-9
Authors

West, John B, John B. West M.D., Ph.D., John B. West

Editors

Robert C. Roach, Peter H. Hackett, Peter D. Wagner

Abstract

When Edmund Hillary and Tenzing Norgay reached the summit of Mt. Everest in 1953, it was the culmination of many attempts beginning in 1921. Alexander Kellas had actually predicted as early as 1920 that the mountain could be climbed, but the extreme altitude of 8848 m with the consequent oxygen deprivation had foiled previous attempts. One reason for the success of the 1953 expedition was the work done by the British physiologist Griffith Pugh in 1952 when he studied many of the physiological factors at high altitude including the oxygen requirements. Seven years later, Pugh and Hillary teamed up again for the Silver Hut Expedition in 1960-1961 that elucidated many of the problems of very high altitude. A group of physiologists spent several months at an altitude of 5800 m in a prefabricated hut and studied many aspects of exercise, pulmonary gas exchange, control of ventilation, and blood changes. Maximal exercise was measured as high as 7440 m and raised anew the question of whether Everest could ever be climbed without supplementary oxygen. The answer was shown to be yes in 1978 by Messner and Habeler, and 3 years later the American Medical Research Expedition to Everest clarified the physiological adaptations that allow humans to reach the highest point on earth. Five people reached the summit, the barometric pressure there was measured for the first time, and alveolar gas samples from the summit showed the critical importance of the extreme hyperventilation. However, the maximal oxygen consumption for the summit inspired PO2 of 43 mmHg was shown to be only about 1 l min(-1). In other words, the highest point on earth is very close to the limit of human tolerance to oxygen deprivation. As we celebrate the anniversary of Charles Darwin, it would be nice to have an evolutionary explanation for this, but in fact it is a cosmic coincidence.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 23%
Researcher 2 15%
Student > Doctoral Student 1 8%
Student > Bachelor 1 8%
Other 1 8%
Other 0 0%
Unknown 5 38%
Readers by discipline Count As %
Medicine and Dentistry 4 31%
Engineering 2 15%
Sports and Recreations 1 8%
Unknown 6 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2016.
All research outputs
#20,334,427
of 22,879,161 outputs
Outputs from Advances in experimental medicine and biology
#3,972
of 4,951 outputs
Outputs of similar age
#304,840
of 352,154 outputs
Outputs of similar age from Advances in experimental medicine and biology
#91
of 113 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,951 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,154 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.