↓ Skip to main content

Hypoxia

Overview of attention for book
Attention for Chapter 22: Hypoxia
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

twitter
11 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Hypoxia
Chapter number 22
Book title
Hypoxia
Published in
Advances in experimental medicine and biology, June 2016
DOI 10.1007/978-1-4899-7678-9_22
Pubmed ID
Book ISBNs
978-1-4899-7676-5, 978-1-4899-7678-9
Authors

Amann, Markus, Dempsey, Jerome A, Markus Amann, Jerome A. Dempsey, Dempsey, Jerome A.

Editors

Robert C. Roach, Peter H. Hackett, Peter D. Wagner

Abstract

We recently hypothesized that across the range of normoxia to severe hypoxia the major determinant of central motor drive (CMD) during endurance exercise switches from a predominantly peripheral origin to a hypoxic-sensitive central component of fatigue. We found that peripheral locomotor muscle fatigue (pLMF) is the prevailing factor limiting central motor drive and therefore exercise performance from normoxia to moderate hypoxia (SaO2 > 75 %). In these levels of arterial hypoxemia, the development of pLMF is confined to a certain limit which varies between humans-pLMF does not develop to this limit in more severe hypoxia (SaO2 < 70 %) and exercise is prematurely terminated presumably to protect the brain from insufficient O2 supply. Based on the observations from normoxia to moderate hypoxia, we outlined a model suggesting that group III/IV muscle afferents impose inhibitory influences on the determination of CMD of working humans during high-intensity endurance exercise with the purpose to regulate and restrict the level of exercise-induced pLMF to an "individual critical threshold." To experimentally test this model, we pharmacologically blocked somatosensory pathways originating in the working limbs during cycling exercise in normoxia. After initial difficulties with a local anesthetic (epidural lidocaine, L3-L4) and associated loss of locomotor muscle strength we switched to an intrathecally applied opioid analgesic (fentanyl, L3-L4). These experiments were the first ever to selectively block locomotor muscle afferents during high-intensity cycling exercise without affecting maximal locomotor muscle strength. In the absence of opioid-mediated neural feedback from the working limbs, CMD was increased and end-exercise pLMF substantially exceeded, for the first time, the individual critical threshold of peripheral fatigue. The outcome of these studies confirm our hypothesis claiming that afferent feedback inhibits CMD and restricts the development of pLMF to an individual critical threshold as observed from normoxia up to moderate hypoxia.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 16%
Student > Master 8 16%
Researcher 5 10%
Student > Doctoral Student 4 8%
Other 4 8%
Other 9 18%
Unknown 12 24%
Readers by discipline Count As %
Sports and Recreations 19 38%
Nursing and Health Professions 7 14%
Medicine and Dentistry 3 6%
Biochemistry, Genetics and Molecular Biology 1 2%
Computer Science 1 2%
Other 3 6%
Unknown 16 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 November 2021.
All research outputs
#5,505,217
of 23,112,054 outputs
Outputs from Advances in experimental medicine and biology
#841
of 4,975 outputs
Outputs of similar age
#89,916
of 353,121 outputs
Outputs of similar age from Advances in experimental medicine and biology
#10
of 113 outputs
Altmetric has tracked 23,112,054 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,975 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,121 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.