↓ Skip to main content

Histamine and Histamine Receptors in Health and Disease

Overview of attention for book
Cover of 'Histamine and Histamine Receptors in Health and Disease'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 8 Histamine H2 Receptor in Blood Cells: A Suitable Target for the Treatment of Acute Myeloid Leukemia
  3. Altmetric Badge
    Chapter 9 Histamine and Histamine Receptors in Allergic Dermatitis
  4. Altmetric Badge
    Chapter 10 Structural Analysis of the Histamine H1 Receptor
  5. Altmetric Badge
    Chapter 11 Role of the Histamine H4-Receptor in Bronchial Asthma
  6. Altmetric Badge
    Chapter 12 Role of the Histamine H3 Receptor in the Central Nervous System
  7. Altmetric Badge
    Chapter 13 Histamine Clearance Through Polyspecific Transporters in the Brain
  8. Altmetric Badge
    Chapter 14 Histamine H1 Receptor Gene Expression and Drug Action of Antihistamines
  9. Altmetric Badge
    Chapter 15 Regulation of the Cardiovascular System by Histamine
  10. Altmetric Badge
    Chapter 18 Histamine Release from Mast Cells and Basophils
  11. Altmetric Badge
    Chapter 22 Analytical Methods for the Quantification of Histamine and Histamine Metabolites
  12. Altmetric Badge
    Chapter 54 Histamine Food Poisoning.
  13. Altmetric Badge
    Chapter 85 Allergy, Histamine and Antihistamines
  14. Altmetric Badge
    Chapter 113 Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands
  15. Altmetric Badge
    Chapter 124 Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System
  16. Altmetric Badge
    Chapter 125 Changes in Histidine Decarboxylase, Histamine N-Methyltransferase and Histamine Receptors in Neuropsychiatric Disorders
  17. Altmetric Badge
    Chapter 127 Histidine Decarboxylase Knockout Mice as a Model of the Pathophysiology of Tourette Syndrome and Related Conditions
  18. Altmetric Badge
    Chapter 130 Clinical Development of Histamine H4 Receptor Antagonists
Attention for Chapter 8: Histamine H2 Receptor in Blood Cells: A Suitable Target for the Treatment of Acute Myeloid Leukemia
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Histamine H2 Receptor in Blood Cells: A Suitable Target for the Treatment of Acute Myeloid Leukemia
Chapter number 8
Book title
Histamine and Histamine Receptors in Health and Disease
Published in
Handbook of experimental pharmacology, June 2016
DOI 10.1007/164_2016_8
Pubmed ID
Book ISBNs
978-3-31-958192-7, 978-3-31-958194-1
Authors

Monczor, Federico, Copsel, Sabrina, Fernandez, Natalia, Davio, Carlos, Shayo, Carina, Federico Monczor, Sabrina Copsel, Natalia Fernandez, Carlos Davio, Carina Shayo

Abstract

Acute myeloid leukemia (AML) consists in a cancer of early hematopoietic cells arising in the bone marrow, most often of those cells that would turn into white blood cells (except lymphocytes). Chemotherapy is the treatment of choice for AML but one of the major complications is that current drugs are highly toxic and poorly tolerated. In general, treatment for AML consists of induction chemotherapy and post-remission therapy. If no further post-remission is given, almost all patients will eventually relapse. Histamine, acting at histamine type-2 (H2) receptors on phagocytes and AML blast cells, helps prevent the production and release of oxygen-free radicals, thereby protecting NK and cytotoxic T cells. This protection allows immune-stimulating agents, such as interleukin-2 (IL-2), to activate cytotoxic cells more effectively, enhancing the killing of tumor cells. Based on this mechanism, post-remission therapy with histamine and IL-2 was found to significantly prevent relapse of AML. Alternatively, another potentially less toxic approach to treat AML employs drugs to induce differentiation of malignant cells. It is based on the assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment results in tumor reprogramming and the induction of terminal differentiation. There are promissory results showing that an elevated and sustained signaling through H2 receptors is able to differentiate leukemia-derived cell lines, opening the door for the use of H2 agonists for specific differentiation therapies. In both situations, histamine acting through H2 receptors constitutes an eligible treatment to induce leukemic cell differentiation, improving combined therapies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 10%
Librarian 1 10%
Other 1 10%
Student > Doctoral Student 1 10%
Student > Master 1 10%
Other 0 0%
Unknown 5 50%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 30%
Unspecified 1 10%
Social Sciences 1 10%
Medicine and Dentistry 1 10%
Unknown 4 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 June 2016.
All research outputs
#20,333,181
of 22,877,793 outputs
Outputs from Handbook of experimental pharmacology
#570
of 649 outputs
Outputs of similar age
#305,988
of 353,574 outputs
Outputs of similar age from Handbook of experimental pharmacology
#4
of 7 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 649 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,574 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.