↓ Skip to main content

Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample

Overview of attention for article published in Discover Nano, July 2012
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample
Published in
Discover Nano, July 2012
DOI 10.1186/1556-276x-7-390
Pubmed ID
Authors

Zongqing Ma, Yongchang Liu, Liming Yu, Qi Cai

Abstract

The ball milling technique has been successfully applied to the synthesis of various materials such as equilibrium intermetallic phases, amorphous compounds, nanocrystalline materials, or metastable crystalline phases. However, how the phase composition and nanoscale microstructure evolute during ball milling in various materials is still controversial due to the complex mechanism of ball milling, especially in the field of solid-state amorphization caused by ball milling. In the present work, the phase evolution during the high-energy ball milling process of the Mg and Cu (atomic ratio is 1:1) mixed powder was investigated. It was found that Mg firstly reacts with Cu, forming the Mg2Cu alloy in the primary stage of ball milling. As the milling time increases, the diffracted peaks of Mg2Cu and Cu gradually disappear, and only a broad halo peak can be observed in the X-ray diffraction pattern of the final 18-h milled sample. As for this halo peak, lots of previous studies suggested that it originated from the amorphous phase formed during the ball milling. Here, a different opinion that this halo peak results from the very small size of crystals is proposed: As the ball milling time increases, the sizes of Mg2Cu and Cu crystals become smaller and smaller, so the diffracted peaks of Mg2Cu and Cu become broader and broader and result in their overlap between 39° and 45°, at last forming the amorphous-like halo peak. In order to determine the origin of this halo peak, microstructure observation and annealing experiment on the milled sample were carried out. In the transmission electron microscopy dark-field image of the milled sample, lots of very small nanocrystals (below 20 nm) identified as Mg2Cu and Cu were found. Moreover, in the differential scanning calorimetry curve of the milled sample during the annealing process, no obvious exothermic peak corresponding to the crystallization of amorphous phase is observed. All the above results confirm that the broad halo diffracted peak in the milled MgCu sample is attributed to the overlap of the broadened peaks of the very small Mg2Cu and Cu nanocrystalline phase, not the MgCu amorphous phase. The whole milling process of MgCu can be described as follows: Mg+Cu→Mg2Cu+Cu→Mg2Cunanocrystal+Cunanocrystal.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 23%
Professor > Associate Professor 2 15%
Other 1 8%
Student > Ph. D. Student 1 8%
Student > Doctoral Student 1 8%
Other 2 15%
Unknown 3 23%
Readers by discipline Count As %
Materials Science 4 31%
Chemical Engineering 1 8%
Physics and Astronomy 1 8%
Agricultural and Biological Sciences 1 8%
Chemistry 1 8%
Other 1 8%
Unknown 4 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2012.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from Discover Nano
#798
of 1,146 outputs
Outputs of similar age
#161,410
of 178,473 outputs
Outputs of similar age from Discover Nano
#19
of 46 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 178,473 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.