↓ Skip to main content

Can Nucleobase Pairs Offer a Possibility of a Direct 3D Self-assembly?

Overview of attention for article published in Discover Nano, March 2016
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Can Nucleobase Pairs Offer a Possibility of a Direct 3D Self-assembly?
Published in
Discover Nano, March 2016
DOI 10.1186/s11671-016-1347-3
Pubmed ID
Authors

Andrey N. Glushenkov, Dmytro M. Hovorun

Abstract

The nucleobase pairs are characterized by their conformational diversity in the wild. Yet a modern nanobiotechnology utilizes their planar conformations only, developing what can be called a "planar approach". It is well established that the most energetically favorable conformations of the complementary nucleobase pairs are planar and correspond to the classical Watson-Crick nucleobase pairs. The point of interest lies in a study of a conformational capacity of the nucleobase pairs to expand the diversity of a spatial configuration and to produce the complex 3D objects from the non-planar conformations. If such a goal could be achieved, then that could definitely open the perspectives for a novel "stereo approach". For the first time, basing on the first principles, we reveal an ability of the heteroassociates of the m(1)Cyt · m(1)Thy to form up to ten observable molecular complexes under standard conditions. The first three of them have population of ~90 % at standard conditions and are highly non-planar. The most energetically favorable structure has a T-shape, while the next two have an L-shape. At the same time, we show the lack of any experimental data covering a self-assembly of the m(1)Cyt · m(1)Thy base pairs. We present a theoretical evidence of the fact that the conformational capacity of the nucleobase pairs is much richer from the perspective of their self-assembly than it is considered in the modern nanobiotechnology. The capability of a modified cytosine and a modified thymine to create significantly non-planar structures opens a way for the innovative "stereo approach" to construction of the nanobiotechnological devices. We believe that a modern nanobiotechnological basis can and should be extended with the new nucleic base pairs with innate ability for non-planar structures. We would like to especially emphasize a prognostic role of our algorithm in obtaining the new results.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Other 1 20%
Student > Doctoral Student 1 20%
Student > Bachelor 1 20%
Student > Ph. D. Student 1 20%
Researcher 1 20%
Other 0 0%
Readers by discipline Count As %
Physics and Astronomy 2 40%
Biochemistry, Genetics and Molecular Biology 1 20%
Immunology and Microbiology 1 20%
Chemistry 1 20%