↓ Skip to main content

Fish Hearing and Bioacoustics

Overview of attention for book
Cover of 'Fish Hearing and Bioacoustics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Fishy Hearing: A Short Biography of Arthur N. Popper, PhD.
  3. Altmetric Badge
    Chapter 2 A Most Interesting Man of Science: The Life and Research of Richard Rozzell Fay.
  4. Altmetric Badge
    Chapter 3 It Started in Hawai'i Kai: Reminiscences of 43 Years (and Counting) of Collaboration and Friendship.
  5. Altmetric Badge
    Chapter 4 A Soliloquy for Art and Dick.
  6. Altmetric Badge
    Chapter 5 Acoustic Communication in Butterflyfishes: Anatomical Novelties, Physiology, Evolution, and Behavioral Ecology.
  7. Altmetric Badge
    Chapter 6 Convergent Aspects of Acoustic Communication in Darters, Sculpins, and Gobies.
  8. Altmetric Badge
    Chapter 7 Directional Hearing and Sound Source Localization in Fishes
  9. Altmetric Badge
    Chapter 8 Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing.
  10. Altmetric Badge
    Chapter 9 Hearing in Cavefishes
  11. Altmetric Badge
    Chapter 10 What the Toadfish Ear Tells the Toadfish Brain About Sound.
  12. Altmetric Badge
    Chapter 11 Comparison of Electrophysiological Auditory Measures in Fishes.
  13. Altmetric Badge
    Chapter 12 The Potential Overlapping Roles of the Ear and Lateral Line in Driving “Acoustic” Responses
  14. Altmetric Badge
    Chapter 13 Multimodal Sensory Input in the Utricle and Lateral Line of the Toadfish, Opsanus tau.
  15. Altmetric Badge
    Chapter 14 Development of Structure and Sensitivity of the Fish Inner Ear.
  16. Altmetric Badge
    Chapter 15 Peripheral Hearing Structures in Fishes: Diversity and Sensitivity of Catfishes and Cichlids.
  17. Altmetric Badge
    Chapter 16 Diversity of Inner Ears in Fishes: Possible Contribution Towards Hearing Improvements and Evolutionary Considerations
  18. Altmetric Badge
    Chapter 17 Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.
  19. Altmetric Badge
    Chapter 18 Chemical Ototoxicity of the Fish Inner Ear and Lateral Line.
  20. Altmetric Badge
    Chapter 19 Neuroanatomical Evidence for Catecholamines as Modulators of Audition and Acoustic Behavior in a Vocal Teleost.
Attention for Chapter 17: Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.
Altmetric Badge

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.
Chapter number 17
Book title
Fish Hearing and Bioacoustics
Published in
Advances in experimental medicine and biology, January 2016
DOI 10.1007/978-3-319-21059-9_17
Pubmed ID
Book ISBNs
978-3-31-921058-2, 978-3-31-921059-9
Authors

Michael E. Smith, J. David Monroe

Editors

Joseph A. Sisneros

Abstract

Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Unknown 34 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 23%
Student > Master 7 20%
Other 5 14%
Researcher 3 9%
Lecturer 2 6%
Other 5 14%
Unknown 5 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 26%
Environmental Science 8 23%
Nursing and Health Professions 2 6%
Medicine and Dentistry 2 6%
Engineering 2 6%
Other 5 14%
Unknown 7 20%