↓ Skip to main content

The Ubiquitin Proteasome System

Overview of attention for book
Cover of 'The Ubiquitin Proteasome System'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Characterization of RING-Between-RING E3 Ubiquitin Transfer Mechanisms
  3. Altmetric Badge
    Chapter 2 Single-Turnover RING/U-Box E3-Mediated Lysine Discharge Assays
  4. Altmetric Badge
    Chapter 3 Methods for NAD-Dependent Ubiquitination Catalyzed by Legionella pneumophila Effector Proteins
  5. Altmetric Badge
    Chapter 4 Using In Vitro Ubiquitylation Assays to Estimate the Affinities of Ubiquitin-Conjugating Enzymes for Their Ubiquitin Ligase Partners
  6. Altmetric Badge
    Chapter 5 Competition Assay for Measuring Deubiquitinating Enzyme Substrate Affinity
  7. Altmetric Badge
    Chapter 6 Enzymatic Assembly of Ubiquitin Chains
  8. Altmetric Badge
    Chapter 7 Ubiquitin-Activated Interaction Traps (UBAITs): Tools for Capturing Protein-Protein Interactions
  9. Altmetric Badge
    Chapter 8 Generating Intracellular Modulators of E3 Ligases and Deubiquitinases from Phage-Displayed Ubiquitin Variant Libraries
  10. Altmetric Badge
    Chapter 9 Integrated Proteogenomic Approach for Identifying Degradation Motifs in Eukaryotic Cells
  11. Altmetric Badge
    Chapter 10 A Method to Monitor Protein Turnover by Flow Cytometry and to Screen for Factors that Control Degradation by Fluorescence-Activated Cell Sorting
  12. Altmetric Badge
    Chapter 11 E. coli-Based Selection and Expression Systems for Discovery, Characterization, and Purification of Ubiquitylated Proteins
  13. Altmetric Badge
    Chapter 12 Strategies to Trap Enzyme-Substrate Complexes that Mimic Michaelis Intermediates During E3-Mediated Ubiquitin-Like Protein Ligation
  14. Altmetric Badge
    Chapter 13 Small-Angle X-Ray Scattering for the Study of Proteins in the Ubiquitin Pathway
  15. Altmetric Badge
    Chapter 14 Methods for Preparing Cryo-EM Grids of Large Macromolecular Complexes
  16. Altmetric Badge
    Chapter 15 Recombinant Expression, Unnatural Amino Acid Incorporation, and Site-Specific Labeling of 26S Proteasomal Subcomplexes
  17. Altmetric Badge
    Chapter 16 Native Gel Approaches in Studying Proteasome Assembly and Chaperones
  18. Altmetric Badge
    Chapter 17 Measuring the Overall Rate of Protein Breakdown in Cells and the Contributions of the Ubiquitin-Proteasome and Autophagy-Lysosomal Pathways
  19. Altmetric Badge
    Chapter 18 Methods to Rapidly Prepare Mammalian 26S Proteasomes for Biochemical Analysis
  20. Altmetric Badge
    Chapter 19 Measurement of the Multiple Activities of 26S Proteasomes
  21. Altmetric Badge
    Chapter 20 Exploring the Regulation of Proteasome Function by Subunit Phosphorylation
  22. Altmetric Badge
    Chapter 21 Scalable In Vitro Proteasome Activity Assay
  23. Altmetric Badge
    Chapter 22 Exploring the Rampant Expansion of Ubiquitin Proteomics
  24. Altmetric Badge
    Chapter 23 Ubiquitin diGLY Proteomics as an Approach to Identify and Quantify the Ubiquitin-Modified Proteome
  25. Altmetric Badge
    Chapter 24 Interpreting the Language of Polyubiquitin with Linkage-Specific Antibodies and Mass Spectrometry
  26. Altmetric Badge
    Chapter 25 Dissecting Dynamic and Heterogeneous Proteasome Complexes Using In Vivo Cross-Linking-Assisted Affinity Purification and Mass Spectrometry
Attention for Chapter 17: Measuring the Overall Rate of Protein Breakdown in Cells and the Contributions of the Ubiquitin-Proteasome and Autophagy-Lysosomal Pathways
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (61st percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
6 X users

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Measuring the Overall Rate of Protein Breakdown in Cells and the Contributions of the Ubiquitin-Proteasome and Autophagy-Lysosomal Pathways
Chapter number 17
Book title
The Ubiquitin Proteasome System
Published in
Methods in molecular biology, September 2018
DOI 10.1007/978-1-4939-8706-1_17
Pubmed ID
Book ISBNs
978-1-4939-8705-4, 978-1-4939-8706-1
Authors

Zhe Sha, Jinghui Zhao, Alfred L. Goldberg, Sha, Zhe, Zhao, Jinghui, Goldberg, Alfred L.

Abstract

In certain physiological or pathological states (e.g., starvation, heat shock, or muscle atrophy) and upon drug treatments, the overall rate of protein degradation in cells may increase or decrease. These adaptations and pathological responses can occur through alterations in substrate flux through the ubiquitin-proteasome pathway (UPP), the autophagy-lysosomal system, or both. Therefore, it is important to precisely measure the activities of these degradation pathways in degrading cell proteins under different physiological states or upon treatment with drugs. In particular, proteasome inhibitors have become very important agents for treating multiple myeloma and very useful tools in basic research. To evaluate rigorously their efficacy and the cellular responses to other inhibitors, it is essential to know the degree of inhibition of protein breakdown. Unfortunately, commonly used assays of the activities of the UPP or autophagy rely on qualitative, indirect approaches that do not directly reflect the actual rates of protein degradation by these pathways. In this chapter, we describe isotopic pulse-chase methods to directly measure overall rates of protein degradation in cells by radiolabeling cell proteins and following their subsequent degradation to radioactive amino acids, which diffuse from cells into the medium and can be easily quantitated. While pulse-chase methods have often been used to follow degradation of specific proteins, the methods described here allow quantification of the total cellular activity in degrading either long-lived proteins (the great bulk of cell constituents) or the fraction with short half-lives. Moreover, by use of specific inhibitors of proteasomes or lysosomes, it is also possible to measure precisely the total contributions of the UPP or lysosomal proteases. These approaches have already been proven very useful in defining the effects of inhibitors, growth factors, nutrients, ubiquitination, and different proteasome activators on overall proteolysis and on substrate flux through the proteasomal and lysosomal pathways.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 24%
Student > Master 8 15%
Student > Bachelor 5 9%
Student > Doctoral Student 3 6%
Researcher 2 4%
Other 6 11%
Unknown 17 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 33%
Agricultural and Biological Sciences 8 15%
Immunology and Microbiology 3 6%
Medicine and Dentistry 3 6%
Chemistry 2 4%
Other 6 11%
Unknown 14 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 January 2023.
All research outputs
#8,304,552
of 25,670,640 outputs
Outputs from Methods in molecular biology
#2,539
of 14,321 outputs
Outputs of similar age
#134,579
of 351,637 outputs
Outputs of similar age from Methods in molecular biology
#34
of 240 outputs
Altmetric has tracked 25,670,640 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 14,321 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,637 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.
We're also able to compare this research output to 240 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.