↓ Skip to main content

Somatic Stem Cells

Overview of attention for book
Cover of 'Somatic Stem Cells'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 An Update on the Therapeutic Potential of Stem Cells
  3. Altmetric Badge
    Chapter 2 Single-Step Plasmid Based Reprogramming of Human Dermal Fibroblasts to Induced Neural Stem Cells
  4. Altmetric Badge
    Chapter 3 Isolation and Analysis of Mesenchymal Progenitors of the Adult Hematopoietic Niche
  5. Altmetric Badge
    Chapter 4 Identification and Isolation of Mice and Human Hematopoietic Stem Cells
  6. Altmetric Badge
    Chapter 5 Identification and Characterization of Hair Follicle Stem Cells
  7. Altmetric Badge
    Chapter 6 Methods of Mesenchymal Stem Cell Homing to the Blood–Brain Barrier
  8. Altmetric Badge
    Chapter 7 3D Bioprinting and Stem Cells
  9. Altmetric Badge
    Chapter 8 Characterization of Gastrospheres Using 3D Coculture System
  10. Altmetric Badge
    Chapter 9 Markers and Methods to Study Adult Midgut Stem Cells
  11. Altmetric Badge
    Chapter 10 Quantitative Analysis of Intestinal Stem Cell Dynamics Using Microfabricated Cell Culture Arrays
  12. Altmetric Badge
    Chapter 11 Detection, Labeling, and Culture of Lung Stem and Progenitor Cells
  13. Altmetric Badge
    Chapter 12 Isolation, Characterization and Differentiation of Mouse Cardiac Progenitor Cells
  14. Altmetric Badge
    Chapter 13 Isolating and Characterizing Adipose-Derived Stem Cells
  15. Altmetric Badge
    Chapter 14 Enzyme-Free Isolation of Adipose-Derived Mesenchymal Stem Cells
  16. Altmetric Badge
    Chapter 15 Identification and Characterizations of Annulus Fibrosus-Derived Stem Cells
  17. Altmetric Badge
    Chapter 16 Maintenance of Tendon Stem/Progenitor Cells in Culture
  18. Altmetric Badge
    Chapter 17 Intravital Imaging to Understand Spatiotemporal Regulation of Osteogenesis and Angiogenesis in Cranial Defect Repair and Regeneration
  19. Altmetric Badge
    Chapter 18 Beating Heart Cells from Hair-Follicle-Associated Pluripotent (HAP) Stem Cells
  20. Altmetric Badge
    Chapter 19 Generation of FLIP and FLIP-FlpE Targeting Vectors for Biallelic Conditional and Reversible Gene Knockouts in Mouse and Human Cells
  21. Altmetric Badge
    Chapter 20 Analytical Platforms and Techniques to Study Stem Cell Metabolism
Attention for Chapter 10: Quantitative Analysis of Intestinal Stem Cell Dynamics Using Microfabricated Cell Culture Arrays
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Quantitative Analysis of Intestinal Stem Cell Dynamics Using Microfabricated Cell Culture Arrays
Chapter number 10
Book title
Somatic Stem Cells
Published in
Methods in molecular biology, September 2018
DOI 10.1007/978-1-4939-8697-2_10
Pubmed ID
Book ISBNs
978-1-4939-8696-5, 978-1-4939-8697-2
Authors

Leigh A. Samsa, Ian A. Williamson, Scott T. Magness, Samsa, Leigh A., Williamson, Ian A., Magness, Scott T.

Abstract

Regeneration of intestinal epithelium is fueled by a heterogeneous population of rapidly proliferating stem cells (ISCs) found in the base of the small intestine and colonic crypts. ISCs populations can be enriched by fluorescence-activated cell sorting (FACS) based on expression of combinatorial cell surface markers, and fluorescent transgenes. Conventional ISC culture is performed by embedding single ISCs or whole crypt units in a matrix and culturing in conditions that stimulate or repress key pathways to recapitulate ISC niche signaling. Cultured ISCs form organoid, which are spherical, epithelial monolayers that are self-renewing, self-patterning, and demonstrate the full complement of intestinal epithelial cell lineages. However, this conventional "bulk" approach to studying ISC biology is often semiquantitative, low throughput, and masks clonal effects and ISC phenotypic heterogeneity. Our group has recently reported the construction, long-term biocompatibility, and use of microfabricated cell raft arrays (CRA) for high-throughput analysis of single ISCs and organoids. CRAs are composed of thousands of indexed and independently retrievable microwells, which in combination with time-lapse microscopy and/or gene-expression analyses are a powerful tool for studying clonal ISC dynamics and micro-niches. In this protocol, we describe how CRAs are used as an adaptable experimental platform to study the effect of exogenous factors on clonal stem cell behavior.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 25%
Student > Bachelor 2 17%
Researcher 2 17%
Student > Ph. D. Student 1 8%
Unknown 4 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 25%
Agricultural and Biological Sciences 3 25%
Business, Management and Accounting 1 8%
Engineering 1 8%
Unknown 4 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2018.
All research outputs
#15,545,423
of 23,103,436 outputs
Outputs from Methods in molecular biology
#5,412
of 13,208 outputs
Outputs of similar age
#212,770
of 336,598 outputs
Outputs of similar age from Methods in molecular biology
#97
of 247 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,208 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,598 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 247 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.