↓ Skip to main content

Fish Hearing and Bioacoustics

Overview of attention for book
Cover of 'Fish Hearing and Bioacoustics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Fishy Hearing: A Short Biography of Arthur N. Popper, PhD.
  3. Altmetric Badge
    Chapter 2 A Most Interesting Man of Science: The Life and Research of Richard Rozzell Fay.
  4. Altmetric Badge
    Chapter 3 It Started in Hawai'i Kai: Reminiscences of 43 Years (and Counting) of Collaboration and Friendship.
  5. Altmetric Badge
    Chapter 4 A Soliloquy for Art and Dick.
  6. Altmetric Badge
    Chapter 5 Acoustic Communication in Butterflyfishes: Anatomical Novelties, Physiology, Evolution, and Behavioral Ecology.
  7. Altmetric Badge
    Chapter 6 Convergent Aspects of Acoustic Communication in Darters, Sculpins, and Gobies.
  8. Altmetric Badge
    Chapter 7 Directional Hearing and Sound Source Localization in Fishes
  9. Altmetric Badge
    Chapter 8 Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing.
  10. Altmetric Badge
    Chapter 9 Hearing in Cavefishes
  11. Altmetric Badge
    Chapter 10 What the Toadfish Ear Tells the Toadfish Brain About Sound.
  12. Altmetric Badge
    Chapter 11 Comparison of Electrophysiological Auditory Measures in Fishes.
  13. Altmetric Badge
    Chapter 12 The Potential Overlapping Roles of the Ear and Lateral Line in Driving “Acoustic” Responses
  14. Altmetric Badge
    Chapter 13 Multimodal Sensory Input in the Utricle and Lateral Line of the Toadfish, Opsanus tau.
  15. Altmetric Badge
    Chapter 14 Development of Structure and Sensitivity of the Fish Inner Ear.
  16. Altmetric Badge
    Chapter 15 Peripheral Hearing Structures in Fishes: Diversity and Sensitivity of Catfishes and Cichlids.
  17. Altmetric Badge
    Chapter 16 Diversity of Inner Ears in Fishes: Possible Contribution Towards Hearing Improvements and Evolutionary Considerations
  18. Altmetric Badge
    Chapter 17 Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.
  19. Altmetric Badge
    Chapter 18 Chemical Ototoxicity of the Fish Inner Ear and Lateral Line.
  20. Altmetric Badge
    Chapter 19 Neuroanatomical Evidence for Catecholamines as Modulators of Audition and Acoustic Behavior in a Vocal Teleost.
Attention for Chapter 16: Diversity of Inner Ears in Fishes: Possible Contribution Towards Hearing Improvements and Evolutionary Considerations
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Diversity of Inner Ears in Fishes: Possible Contribution Towards Hearing Improvements and Evolutionary Considerations
Chapter number 16
Book title
Fish Hearing and Bioacoustics
Published in
Advances in experimental medicine and biology, November 2015
DOI 10.1007/978-3-319-21059-9_16
Pubmed ID
Book ISBNs
978-3-31-921058-2, 978-3-31-921059-9
Authors

Tanja Schulz-Mirbach, Friedrich Ladich

Editors

Joseph A. Sisneros

Abstract

Fishes have evolved the largest diversity of inner ears among vertebrates. While G. Retzius introduced us to the diversity of the gross morphology of fish ears in the late nineteenth century, it was A. N. Popper who unraveled the large variety of the fine structure during the last four decades. Modifications of the basic inner ear structure-consisting of three semicircular canals and their sensory epithelia, the cristae and three otolithic end organs (utricle, saccule, lagena) including the maculae-mainly relate to the saccule and lagena and the respective sensory epithelia, the macula sacculi and macula lagenae. Despite the profound morphological knowledge of inner ears and the morphological variability, the functional significance of this diversity is still largely unknown. The aims of this review are therefore twofold. First it provides an update of the state of the art of inner ear diversity in bony fishes. Second it summarizes and discusses hypotheses on the evolution of this diversity as well as formulates open questions and promising approaches to tackle these issues.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 23%
Student > Ph. D. Student 4 18%
Student > Doctoral Student 3 14%
Student > Master 2 9%
Other 2 9%
Other 3 14%
Unknown 3 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 27%
Environmental Science 2 9%
Biochemistry, Genetics and Molecular Biology 2 9%
Earth and Planetary Sciences 2 9%
Medicine and Dentistry 2 9%
Other 4 18%
Unknown 4 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 November 2015.
All research outputs
#17,776,263
of 22,831,537 outputs
Outputs from Advances in experimental medicine and biology
#3,101
of 4,950 outputs
Outputs of similar age
#192,003
of 285,121 outputs
Outputs of similar age from Advances in experimental medicine and biology
#42
of 71 outputs
Altmetric has tracked 22,831,537 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,950 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 285,121 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 71 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.