↓ Skip to main content

Data Mining for Systems Biology

Overview of attention for book
Cover of 'Data Mining for Systems Biology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Identifying Bacterial Strains from Sequencing Data
  3. Altmetric Badge
    Chapter 2 MetaVW: Large-Scale Machine Learning for Metagenomics Sequence Classification
  4. Altmetric Badge
    Chapter 3 Online Interactive Microbial Classification and Geospatial Distributional Analysis Using BioAtlas
  5. Altmetric Badge
    Chapter 4 Generative Models for Quantification of DNA Modifications
  6. Altmetric Badge
    Chapter 5 DiMmer: Discovery of Differentially Methylated Regions in Epigenome-Wide Association Study (EWAS) Data
  7. Altmetric Badge
    Chapter 6 Implementing a Transcription Factor Interaction Prediction System Using the GenoMetric Query Language
  8. Altmetric Badge
    Chapter 7 Multiple Testing Tool to Detect Combinatorial Effects in Biology
  9. Altmetric Badge
    Chapter 8 SiBIC: A Tool for Generating a Network of Biclusters Captured by Maximal Frequent Itemset Mining
  10. Altmetric Badge
    Chapter 9 Computing and Visualizing Gene Function Similarity and Coherence with NaviGO
  11. Altmetric Badge
    Chapter 10 Analyzing Glycan-Binding Profiles Using Weighted Multiple Alignment of Trees
  12. Altmetric Badge
    Chapter 11 Analysis of Fluxomic Experiments with Principal Metabolic Flux Mode Analysis
  13. Altmetric Badge
    Chapter 12 Analyzing Tandem Mass Spectra Using the DRIP Toolkit: Training, Searching, and Post-Processing
  14. Altmetric Badge
    Chapter 13 Sparse Modeling to Analyze Drug–Target Interaction Networks
  15. Altmetric Badge
    Chapter 14 DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank
  16. Altmetric Badge
    Chapter 15 MeSHLabeler and DeepMeSH: Recent Progress in Large-Scale MeSH Indexing
  17. Altmetric Badge
    Chapter 16 Disease Gene Classification with Metagraph Representations
  18. Altmetric Badge
    Chapter 17 Inferring Antimicrobial Resistance from Pathogen Genomes in KEGG
Attention for Chapter 13: Sparse Modeling to Analyze Drug–Target Interaction Networks
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Sparse Modeling to Analyze Drug–Target Interaction Networks
Chapter number 13
Book title
Data Mining for Systems Biology
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-8561-6_13
Pubmed ID
Book ISBNs
978-1-4939-8560-9, 978-1-4939-8561-6
Authors

Yoshihiro Yamanishi, Yamanishi, Yoshihiro

Abstract

Most drugs produce their phenotypic effects by interacting with target proteins, and understanding the molecular features that underpin drug-target interactions is crucial when designing a novel drug. In this chapter, we introduce the protocols that have driven recent advances in sparse modeling methods for analyzing drug-target interaction networks within a chemogenomic framework. In this approach, the chemical structures of candidate drug compounds are correlated with the genomic sequences of the candidate target proteins. We demonstrate the use of sparse canonical correspondence analysis and sparsity-induced binary classifiers to extract the underlying molecular features that are most strongly involved in drug-target interactions. We focus on drug chemical substructures and protein domains. Workflows for applying these methods are presented, and an application is described in detail. We consider the characteristics of each method and suggest possible directions for future research.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 50%
Student > Bachelor 1 25%
Unknown 1 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 50%
Agricultural and Biological Sciences 1 25%
Unknown 1 25%