↓ Skip to main content

Optimization of ZnO-NPs to Investigate Their Safe Application by Assessing Their Effect on Soil Nematode Caenorhabditis elegans

Overview of attention for article published in Discover Nano, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Optimization of ZnO-NPs to Investigate Their Safe Application by Assessing Their Effect on Soil Nematode Caenorhabditis elegans
Published in
Discover Nano, July 2015
DOI 10.1186/s11671-015-1010-4
Pubmed ID
Authors

Shruti Gupta, Tanuja Kushwah, Ashutosh Vishwakarma, Shweta Yadav

Abstract

Zinc oxide nanoparticles (ZnO-NPs) are increasingly receiving attention due to their widespread application in cosmetics, pigments and coatings. This has raised concerns in the public and scientific communities regarding their unexpected health effects. Toxicity effect of ZnO-NPs on the environment was assessed in the present study using Caenorhabditis elegans. Multiple toxicity end points including their mortality, behaviour, reproduction, in vitro distribution and expression of stress response mtl-1 and sod-1 genes were observed to evaluate safe application of ZnO-NPs. C. elegans were exposed to 10, 50, and 100 nm ZnO-NPs (0.1 to 2.0 g/l). Application of 10 nm ≥0.7g/l adversely affects the survivability of worms and was significantly not affected with exposure of 50 and 100 nm ≤1.0 g/l. However, reproduction was affected at much low concentration as compared to their survivability. LC50 was recorded 1.0 ± 0.06 (g/l) for 100 nm, 0.90 ± 0.60 for 50 nm and 0.620 ± 0.08 for 10 nm. Expression of mtl-1 and sod-1 was significantly increased with application of 10 nm ≥0.7g/l and significantly unaffected with exposure of 50 and 100 nm at the same concentration. ZnO-NPs (10 nm) had shown even distribution extended nearly the entire length of the body. The distribution pattern of ZnO-NPs indicates that the intestine is the major target tissues for NP toxicity. Study demonstrates that small-sized (10 nm) ZnO-NPs ≥0.7g/l is more toxic than larger-sized particles. This may be suggested on the basis of available data; application of 50 and 100 nm ≤1.0 g/l ZnO-NPs may be used to the environment as this shows no significant toxicity. However, further calibration is warranted to explore safe dose on soil compartments prior to their field application.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Israel 1 2%
Unknown 47 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 21%
Researcher 7 15%
Student > Bachelor 5 10%
Student > Master 4 8%
Other 3 6%
Other 6 13%
Unknown 13 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 29%
Biochemistry, Genetics and Molecular Biology 5 10%
Immunology and Microbiology 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Environmental Science 2 4%
Other 4 8%
Unknown 18 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 July 2015.
All research outputs
#16,048,009
of 25,374,917 outputs
Outputs from Discover Nano
#501
of 1,146 outputs
Outputs of similar age
#145,393
of 275,153 outputs
Outputs of similar age from Discover Nano
#12
of 19 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,153 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.