↓ Skip to main content

Cell Biology of Herpes Viruses

Overview of attention for book
Attention for Chapter 5: Herpesvirus Latency: On the Importance of Positioning Oneself
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Herpesvirus Latency: On the Importance of Positioning Oneself
Chapter number 5
Book title
Cell Biology of Herpes Viruses
Published in
Advances in anatomy embryology and cell biology, May 2017
DOI 10.1007/978-3-319-53168-7_5
Pubmed ID
Book ISBNs
978-3-31-953167-0, 978-3-31-953168-7
Authors

Lomonte, Patrick, Patrick Lomonte

Abstract

The nucleus is composed of multiple compartments and domains, which directly or indirectly influence many cellular processes including gene expression, RNA splicing and maturation, protein post-translational modifications, and chromosome segregation. Nuclear-replicating viruses, especially herpesviruses, have co-evolved with the cell, adopting strategies to counteract and eventually hijack this hostile environment for their own benefit. This allows them to persist in the host for the entire life of an individual and to ensure their maintenance in the target species. Herpesviruses establish latency in dividing or postmitotic cells from which they can efficiently reactivate after sometimes years of a seemingly dormant state. Therefore, herpesviruses circumvent the threat of permanent silencing by reactivating their dormant genomes just enough to escape extinction, but not too much to avoid life-threatening damage to the host. In addition, herpesviruses that establish latency in dividing cells must adopt strategies to maintain their genomes in the daughter cells to avoid extinction by dilution of their genomes following multiple cell divisions. From a biochemical point of view, reactivation and maintenance of viral genomes in dividing cells occur successfully because the viral genomes interact with the nuclear architecture in a way that allows the genomes to be transmitted faithfully and to benefit from the nuclear micro-environments that allow reactivation following specific stimuli. Therefore, spatial positioning of the viral genomes within the nucleus is likely to be essential for the success of the latent infection and, beyond that, for the maintenance of herpesviruses in their respective hosts.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 27%
Student > Master 4 27%
Student > Bachelor 2 13%
Student > Doctoral Student 2 13%
Researcher 1 7%
Other 0 0%
Unknown 2 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 53%
Veterinary Science and Veterinary Medicine 2 13%
Environmental Science 1 7%
Agricultural and Biological Sciences 1 7%
Immunology and Microbiology 1 7%
Other 0 0%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 June 2018.
All research outputs
#20,421,487
of 22,973,051 outputs
Outputs from Advances in anatomy embryology and cell biology
#64
of 86 outputs
Outputs of similar age
#272,585
of 313,134 outputs
Outputs of similar age from Advances in anatomy embryology and cell biology
#11
of 13 outputs
Altmetric has tracked 22,973,051 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 86 research outputs from this source. They receive a mean Attention Score of 2.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,134 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.