↓ Skip to main content

Two-Hybrid Systems

Overview of attention for book
Cover of 'Two-Hybrid Systems'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Protein Interactomics by Two-Hybrid Methods
  3. Altmetric Badge
    Chapter 2 Making the Right Choice: Critical Parameters of the Y2H Systems
  4. Altmetric Badge
    Chapter 3 Identification of Protein–Protein Interactions Using Pool-Array-Based Yeast Two-Hybrid Screening
  5. Altmetric Badge
    Chapter 4 Detecting Interactions of Membrane Proteins: The Split-Ubiquitin System
  6. Altmetric Badge
    Chapter 5 The Ras Recruitment System (RRS) for the Identification and Characterization of Protein–Protein Interactions
  7. Altmetric Badge
    Chapter 6 A Bacterial Adenylate Cyclase-Based Two-Hybrid System Compatible with Gateway ® Cloning
  8. Altmetric Badge
    Chapter 7 Analyses of Protein Interaction Networks Using Computational Tools
  9. Altmetric Badge
    Chapter 8 Options and Considerations When Using a Yeast One-Hybrid System
  10. Altmetric Badge
    Chapter 9 Screening Arrayed Libraries with DNA and Protein Baits to Identify Interacting Proteins
  11. Altmetric Badge
    Chapter 10 Construction of Arabidopsis Transcription Factor ORFeome Collections and Identification of Protein–DNA Interactions by High-Throughput Yeast One-Hybrid Screens
  12. Altmetric Badge
    Chapter 11 Transcription Factor-Centered Yeast One-Hybrid Assay
  13. Altmetric Badge
    Chapter 12 The Yeast Three-Hybrid System for Protein Interactions
  14. Altmetric Badge
    Chapter 13 The Yeast Three-Hybrid System for Screening RNA-Binding Proteins in Plants
  15. Altmetric Badge
    Chapter 14 Using Yeast Hybrid System to Identify Proteins Binding to Small Molecules
  16. Altmetric Badge
    Chapter 15 Shuttling of Entire Libraries from an Entry Vector to a Destination Vector of the Gateway System
  17. Altmetric Badge
    Chapter 16 Bimolecular Fluorescence Complementation with Improved Gateway-Compatible Vectors to Visualize Protein–Protein Interactions in Plant Cells
  18. Altmetric Badge
    Chapter 17 Bimolecular Fluorescence Complementation to Visualize Protein–Protein Interactions in Human Cells Based on Gateway Cloning Technology
  19. Altmetric Badge
    Chapter 18 KISS: A Mammalian Two-Hybrid Method for In Situ Analysis of Protein–Protein Interactions
  20. Altmetric Badge
    Chapter 19 Coimmunoprecipitation of Interacting Proteins in Plants
  21. Altmetric Badge
    Chapter 20 Analysis of Protein–Protein Interaction by Co-IP in Human Cells
  22. Altmetric Badge
    Chapter 21 Tandem Affinity Purification of Protein Complexes from Arabidopsis Cell Cultures
  23. Altmetric Badge
    Chapter 22 Transient Transactivation Studies in Nicotiana benthamiana Leaves
  24. Altmetric Badge
    Chapter 23 The Use of the Chromatin Immunoprecipitation Technique for In Vivo Identification of Plant Protein–DNA Interactions
  25. Altmetric Badge
    Chapter 24 Chromatin Immunoprecipitation for Identification of Protein–DNA Interactions in Human Cells
Attention for Chapter 4: Detecting Interactions of Membrane Proteins: The Split-Ubiquitin System
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

twitter
19 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Detecting Interactions of Membrane Proteins: The Split-Ubiquitin System
Chapter number 4
Book title
Two-Hybrid Systems
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7871-7_4
Pubmed ID
Book ISBNs
978-1-4939-7870-0, 978-1-4939-7871-7
Authors

Lisa Yasmin Asseck, Christopher Grefen, Asseck, Lisa Yasmin, Grefen, Christopher

Abstract

The in vivo analysis of protein-protein interactions (PPIs) is a critical factor for gaining insights into cellular mechanisms and their biological functions. To that end, a constantly growing number of genetic tools has been established, some of which are using baker's yeast (Saccharomyces cerevisiae) as a model organism. Here, we provide a detailed protocol for the yeast mating-based split-ubiquitin system (mbSUS) to study binary interactions among or with full-length membrane proteins in their native subcellular environment. The system is based on the reassembly of two autonomously non-functional ubiquitin moieties attached to proteins of interest (POIs) into a native-like molecule followed by the release of a transcription factor. Upon its nuclear import, the activation of reporter gene expression gives a visual output via growth on interaction-selective media. Additionally, we apply a modification of the classical split-ubiquitin technique called CytoSUS that detects interactions of non-membrane/soluble proteins in their full-length form via translational fusion of an ER membrane anchor.

X Demographics

X Demographics

The data shown below were collected from the profiles of 19 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 33%
Student > Ph. D. Student 3 20%
Student > Bachelor 2 13%
Student > Master 2 13%
Professor > Associate Professor 1 7%
Other 0 0%
Unknown 2 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 53%
Agricultural and Biological Sciences 5 33%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 June 2018.
All research outputs
#3,210,451
of 23,085,832 outputs
Outputs from Methods in molecular biology
#726
of 13,205 outputs
Outputs of similar age
#73,805
of 442,605 outputs
Outputs of similar age from Methods in molecular biology
#50
of 1,499 outputs
Altmetric has tracked 23,085,832 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,205 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,605 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 1,499 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.