↓ Skip to main content

Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations

Overview of attention for book
Attention for Chapter 5: Fibrinogen-Related Proteins (FREPs) in Mollusks.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Fibrinogen-Related Proteins (FREPs) in Mollusks.
Chapter number 5
Book title
Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations
Published in
Results and problems in cell differentiation, January 2015
DOI 10.1007/978-3-319-20819-0_5
Pubmed ID
Book ISBNs
978-3-31-920818-3, 978-3-31-920819-0
Authors

Adema, Coen M, Coen M. Adema

Abstract

Anti-parasite responses of the snail Biomphalaria glabrata involve antigen-reactive plasma lectins termed fibrinogen-related proteins (FREPs) comprising a C-terminal fibrinogen (FBG) domain and one or two upstream immunoglobulin domains. FREPs are highly polymorphic; they derive from several gene families with multiple loci and alleles that are diversified by exon loss, alternative splicing, and random somatic mutation (gene conversion and point mutations). Individual B. glabrata snails have dynamically distinct FREP sequence repertoires. The immune relevance of B. glabrata FREPs is indicated by FREP binding to polymorphic antigens of (snail-specific) digenean parasites and altered resistance of B. glabrata to digeneans following RNAi knockdown of FREPs. The compatibility polymorphism hypothesis proposes that FREP mutation increases the range of germline-encoded immune recognition in B. glabrata to counter antigenically-varied parasites. Somatic mutation may result from sequence exchange among tandemly arranged FREP genes in the genome, and analysis of sequence variants also suggests involvement of cytidine deaminase-like activity or epigenetic regulation. Without current indications of selection or retention of effective sequence variants toward immunological memory, FREP diversification is thought to afford B. glabrata immunity that is anticipatory but not adaptive. More remains to be learned about this system; other mollusks elaborate diversified lectins consisting of single FBG domains, and bona fide FREPs were reported from additional gastropod species, but these may not be diversified. Future comparative immunological studies and gene discovery driven by next-generation sequencing will further clarify taxonomic distribution of FREP diversification and the underlying mutator mechanisms as a component of immune function in mollusks.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 23%
Researcher 4 13%
Student > Master 3 10%
Student > Bachelor 2 7%
Professor 1 3%
Other 2 7%
Unknown 11 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 23%
Agricultural and Biological Sciences 5 17%
Immunology and Microbiology 2 7%
Environmental Science 1 3%
Veterinary Science and Veterinary Medicine 1 3%
Other 2 7%
Unknown 12 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 April 2016.
All research outputs
#15,349,796
of 22,832,057 outputs
Outputs from Results and problems in cell differentiation
#96
of 217 outputs
Outputs of similar age
#209,043
of 353,176 outputs
Outputs of similar age from Results and problems in cell differentiation
#7
of 17 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 217 research outputs from this source. They receive a mean Attention Score of 2.1. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,176 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.