↓ Skip to main content

DNA Replication

Overview of attention for book
Cover of 'DNA Replication'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Historical Perspective of Eukaryotic DNA Replication
  3. Altmetric Badge
    Chapter 2 Regulation of Replication Origins
  4. Altmetric Badge
    Chapter 3 Molecular Mechanism for Chromatin Regulation During MCM Loading in Mammalian Cells
  5. Altmetric Badge
    Chapter 4 Initiation of DNA Replication at the Chromosomal Origin of E. coli , oriC
  6. Altmetric Badge
    Chapter 5 Initiation of DNA Replication in the Archaea
  7. Altmetric Badge
    Chapter 6 Mechanism of Lagging-Strand DNA Replication in Eukaryotes
  8. Altmetric Badge
    Chapter 7 Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication
  9. Altmetric Badge
    Chapter 8 Termination of Eukaryotic Replication Forks
  10. Altmetric Badge
    Chapter 9 Structure of the MCM2-7 Double Hexamer and Its Implications for the Mechanistic Functions of the Mcm2-7 Complex
  11. Altmetric Badge
    Chapter 10 Architecture of the Saccharomyces cerevisiae Replisome
  12. Altmetric Badge
    Chapter 11 Replication Domains: Genome Compartmentalization into Functional Replication Units
  13. Altmetric Badge
    Chapter 12 Rif1-Dependent Regulation of Genome Replication in Mammals
  14. Altmetric Badge
    Chapter 13 G-Quadruplexes and DNA Replication Origins
  15. Altmetric Badge
    Chapter 14 Interaction of Rif1 Protein with G-Quadruplex in Control of Chromosome Transactions
  16. Altmetric Badge
    Chapter 15 Chromatin Replication and Histone Dynamics
  17. Altmetric Badge
    Chapter 16 The Temporal Regulation of S Phase Proteins During G1
  18. Altmetric Badge
    Chapter 17 Roles of SUMO in Replication Initiation, Progression, and Termination
  19. Altmetric Badge
    Chapter 18 The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication
  20. Altmetric Badge
    Chapter 19 Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System
  21. Altmetric Badge
    Chapter 20 Coordinating Replication with Transcription
  22. Altmetric Badge
    Chapter 21 Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites
  23. Altmetric Badge
    Chapter 22 Cyclin E Deregulation and Genomic Instability
  24. Altmetric Badge
    Chapter 23 Replication Through Repetitive DNA Elements and Their Role in Human Diseases
Attention for Chapter 7: Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication
Altmetric Badge

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication
Chapter number 7
Book title
DNA Replication
Published in
Advances in experimental medicine and biology, January 2017
DOI 10.1007/978-981-10-6955-0_7
Pubmed ID
Book ISBNs
978-9-81-106954-3, 978-9-81-106955-0
Authors

Eiji Ohashi, Toshiki Tsurimoto, Ohashi, Eiji, Tsurimoto, Toshiki

Abstract

Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 20%
Student > Bachelor 4 16%
Student > Doctoral Student 3 12%
Researcher 3 12%
Student > Master 2 8%
Other 1 4%
Unknown 7 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 44%
Agricultural and Biological Sciences 4 16%
Medicine and Dentistry 2 8%
Immunology and Microbiology 1 4%
Unknown 7 28%