↓ Skip to main content

Chromothripsis

Overview of attention for book
Cover of 'Chromothripsis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Genomic Characteristics and Origin of Chromothripsis
  3. Altmetric Badge
    Chapter 2 Clinical Consequences of Chromothripsis and Other Catastrophic Cellular Events
  4. Altmetric Badge
    Chapter 3 Potential Role of Chromothripsis in the Genesis of Complex Chromosomal Rearrangements in Human Gametes and Preimplantation Embryo
  5. Altmetric Badge
    Chapter 4 Chromothripsis and the Macroevolution Theory
  6. Altmetric Badge
    Chapter 5 Analysis of Chromothripsis by Combined FISH and Microarray Analysis
  7. Altmetric Badge
    Chapter 6 Chromothripsis Detectable in Small Supernumerary Marker Chromosomes (sSMC) Using Fluorescence In Situ Hybridization (FISH)
  8. Altmetric Badge
    Chapter 7 Identification of Chromothripsis in Biopsy Using SNP-Based Microarray
  9. Altmetric Badge
    Chapter 8 Detection of Chromothripsis in Plants
  10. Altmetric Badge
    Chapter 9 RNA-Seq Analysis to Detect Abnormal Fusion Transcripts Linked to Chromothripsis
  11. Altmetric Badge
    Chapter 10 Experimental Determination of Checkpoint Adaptation by Mitotic Shake-Off and Microscopy
  12. Altmetric Badge
    Chapter 11 A Role for Retrotransposons in Chromothripsis
  13. Altmetric Badge
    Chapter 12 Generation of Micronuclei and Detection of Chromosome Pulverization
  14. Altmetric Badge
    Chapter 13 Detection of Impaired DNA Replication and Repair in Micronuclei as Indicators of Genomic Instability and Chromothripsis
  15. Altmetric Badge
    Chapter 14 Study of Telomere Dysfunction in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability
  16. Altmetric Badge
    Chapter 15 Genes, Proteins, and Biological Pathways Preventing Chromothripsis
  17. Altmetric Badge
    Chapter 16 Expression of Genes Associated with Telomere Homeostasis in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability
  18. Altmetric Badge
    Chapter 17 Chromothripsis Detection and Characterization Using the CTLPScanner Web Server
  19. Altmetric Badge
    Chapter 18 ChromothripsisDB: A Curated Database for the Documentation, Visualization, and Mining of Chromothripsis Data
  20. Altmetric Badge
    Chapter 19 Time-Lapse Imaging for the Detection of Chromosomal Abnormalities in Primate Preimplantation Embryos
  21. Altmetric Badge
    Chapter 20 Correlative Live Imaging and Immunofluorescence for Analysis of Chromosome Segregation in Mouse Preimplantation Embryos
  22. Altmetric Badge
    Chapter 21 Experimental Induction of Genome Chaos
  23. Altmetric Badge
    Chapter 22 Looking for Broken TAD Boundaries and Changes on DNA Interactions: Clinical Guide to 3D Chromatin Change Analysis in Complex Chromosomal Rearrangements and Chromothripsis
Attention for Chapter 5: Analysis of Chromothripsis by Combined FISH and Microarray Analysis
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Analysis of Chromothripsis by Combined FISH and Microarray Analysis
Chapter number 5
Book title
Chromothripsis
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7780-2_5
Pubmed ID
Book ISBNs
978-1-4939-7779-6, 978-1-4939-7780-2
Authors

Ruth N. MacKinnon, MacKinnon, Ruth N.

Abstract

Fluorescence in situ hybridization (FISH) to metaphase chromosomes, in conjunction with SNP array, array CGH, or whole genome sequencing, can help determine the organization of abnormal genomes after chromothripsis and other types of complex genome rearrangement. DNA microarrays can identify the changes in copy number, but they do not give information on the organization of the abnormal chromosomes, balanced rearrangements, or abnormalities of the centromeres and other regions comprised of highly repetitive DNA. Many of these details can be determined by the strategic use of metaphase FISH. FISH is a single-cell technique, so it can identify low-frequency chromosome abnormalities, and it can determine which chromosome abnormalities occur in the same or different clonal populations. These are important considerations in cancer. Metaphase chromosomes are intact, so information about abnormalities of the chromosome homologues is preserved. Here we describe strategies for working out the organization of highly rearranged genomes by combining SNP array data with various metaphase FISH methods. This approach can also be used to address some of the uncertainties arising from whole genome or mate-pair sequencing data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 67%
Unknown 1 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 67%
Unknown 1 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 March 2018.
All research outputs
#14,751,991
of 22,708,120 outputs
Outputs from Methods in molecular biology
#4,659
of 13,077 outputs
Outputs of similar age
#253,842
of 440,612 outputs
Outputs of similar age from Methods in molecular biology
#508
of 1,498 outputs
Altmetric has tracked 22,708,120 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,077 research outputs from this source. They receive a mean Attention Score of 3.3. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,612 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.