↓ Skip to main content

RNA Interference-Mediated Gene Silencing in Esophageal Adenocarcinoma.

Overview of attention for article published in Methods in molecular biology, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RNA Interference-Mediated Gene Silencing in Esophageal Adenocarcinoma.
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7734-5_23
Pubmed ID
Authors

Islam, Farhadul, Gopalan, Vinod, Lam, Alfred K

Abstract

RNA interference (RNAi) is a normal physiological mechanism in which a short effector antisense RNA molecule regulates target gene expression. It is a powerful tool to silence a particular gene of interest in a sequence-specific manner and can be used to target against various molecular pathways in esophageal adenocarcinoma by designing RNAi targeting key pathogenic genes. RNAi-based therapeutics against esophageal adenocarcinoma can be developed using different strategies including inhibition of overexpressed oncogenes, blocking cell division by interfering cyclins and related genes or enhancing apoptosis by suppressing anti-apoptotic genes. In addition, RNAi against multidrug resistance genes or chemo-resistance targets may provide promising cancer therapeutic options. Here, we describe RNAi technology using MET, a proto-oncogene in esophageal adenocarcinoma cells, as a model target. Lentiviral particles expressing MET shRNA was used to silence MET genes. Then, Western blot analysis was performed to confirm MET knockdown.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 20%
Student > Ph. D. Student 1 20%
Student > Postgraduate 1 20%
Student > Master 1 20%
Unknown 1 20%
Readers by discipline Count As %
Medicine and Dentistry 2 40%
Biochemistry, Genetics and Molecular Biology 1 20%
Unknown 2 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2018.
All research outputs
#18,594,219
of 23,031,582 outputs
Outputs from Methods in molecular biology
#7,974
of 13,177 outputs
Outputs of similar age
#330,599
of 442,391 outputs
Outputs of similar age from Methods in molecular biology
#950
of 1,499 outputs
Altmetric has tracked 23,031,582 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,177 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,391 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,499 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.